Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Overview

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making

Created by Iago Pachêco Gomes at USP - ICMC, University of São Paulo - Institute of Mathematics and Computer Science

(waiting for the result of the submission to Expert Systems with Applications)

Introduction

T2FIS Driving Style is an implementation of a Driving Style Recognition using Interval Type-2 Fuzzy Inference System [1]. This repository has the codes to extract the data sequences from Argoverse's trajectory prediction dataset; the codes to calculate the features vectors; the implementation of clustering algorithms (Kmeans, Fuzzy C-means, Gaussian Mixture Models Clusteris, and Agglomerative Hierarchical Clustering) used to compare the results; and, the implementations of Type-1 and Type-2 Fuzzy Inference Systems.

License

Apache License 2.0

Citation

Usage

Requirements

Features

Dataset

  1. Follow the instructions to install the Argoverse dataset API at: https://github.com/argoai/argoverse-api
  2. Download training and validation datasets for Motion Forecasting v1.1

Sequences Extraction

  1. at features/argoverse_template:
python extract_sequences.py --data_dir 
   
     --features_dir 
    
      --mode 
     
       --batch_size 500 --obs_len 5 --filter 
      

      
     
    
   
  1. at features:
python compute_features.py --data_dir 
   
     --features_fir 
    
      --mode 
     
       --batch_size 100 --obs_len 5 --filter 
      

      
     
    
   

Clustering

Fuzzy Inference Systems

References

[1] (under revision) GOMES, Iago Pachêco; WOLF, Denis Fernando. Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making. Expert Systems with Applications. 2021.

Contact

If you find any bug or issue of the software, please contact 'iagogomes at usp dot br' or 'iago.pg00 at gmail dot com'

Owner
Iago Gomes
Iago Gomes
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021