Measure WWjj polarization fraction

Overview

WlWl Polarization

Measure WWjj polarization fraction

sm sm_lltt sm_lttl

Paper: arXiv:2109.09924
Notice: This code can only be used for the inference process, if you want to train your own model, please contact [email protected].

Requirements

  • Both Linux and Windows are supported.
  • 64-bit Python3.6(or higher, recommend 3.8) installation.
  • Tensorflow2.x(recommend 2.6), Numpy(recommend 1.19.5), Matplotlib(recommend 3.4.2)
  • One or more high-end NVIDIA GPUs(at least 4 GB of DRAM), NVIDIA drivers, CUDA(recommend 11.4) toolkit and cuDNN(recommend 8.2.x).

Preparing dataset

The raw dataset needs to be transformed before it can be imported into the model.

  • You need to create a raw dataset(we provide a test dataset, stored in ./raw/), the data structure is as follows:
The file has N events:
   Event 1
   Event 2
   ...
   Event N
One event for every 6 lines:
   1. first lepton 
   2. second lepton 
   3. first FB jet 
   4. second FB jet 
   5. MET 
   6. remaining jet 
Each line has the following five columns of elements:
   1.ParticleID  2.Px  3.Py  4.Pz  5.E
The format of an event in the dataset is as follows:
   ...
   -1.0  166.023   5.35817   10.784    166.459
   1.0   -36.1648  -64.1513  -28.9064  79.113
   7.0   -11.3233  -39.6316  -318.178  320.85
   7.0   -34.2795  22.0472   622.79    624.128
   0.0   -22.6711  52.8976   -422.567  426.468
   6.0   -49.9758  29.3283   274.517   294.098
   ...

ParticleID: 1 for electron, 2 for muon, 3 for tau, 4 for b-jet, 5 for normal jet, 0 for met, 6 for remaining jets, 7 for forward backward jet, signs represent electric charge.

  • Use the command python create_dataset.py YOUR_RAWDATA_PATH, it will create a file with the same name as YOUR_RAWDATA_PATH in the ./dataset/.

Using pre-trained models

After completing the preparation of the dataset, you can use the model to predict the polarization fraction.

  • Pre-trained weights are placed in ./weights/.
  • Use the command python inference.py --dataset YOUR_TRADATA_NAME --model_name <MODEL_NAME> --energy_level <ENERGY_LEVEL>, it will give the polarization fractions.

Notice: <ENERGY_LEVEL> should correspond to the collision energy of events.

Example

Run the following command to get the polarization fractions for the standard model:

python create_dataset.py ./raw/sm.dat
python inference.py --dataset sm --model_name TRANS --energy_level 13

Citation

@misc{li2021polarization,
    title={Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network},
    author={Jinmian Li and Cong Zhang and Rao Zhang},
    year={2021},
    eprint={2109.09924},
    archivePrefix={arXiv},
    primaryClass={hep-ph}
}
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022