Implementations of paper Controlling Directions Orthogonal to a Classifier

Overview

Classifier Orthogonalization

Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022,  Yilun Xu, Hao He, Tianxiao Shen, Tommi Jaakkola

Let's construct orthogonal classifiers for controlled style transfer, domain adaptation with label shifts and fairness problems 🤠 !

Outline

Controlled Style Transfer

Prepare CelebA-GH dataset:

python style_transfer/celeba_dataset.py --data_dir {path}

path: path to the CelebA dataset

bash example: python style_transfer/celeba_dataset.py --data_dir ./data

One can modify the domain_fn dictionary in the style_transfer/celeba_dataset.py file to create new groups 💡

Step 1: Train principal, full and oracle orthogonal classifiers

sh style_transfer/train_classifiers.sh {gpu} {path} {dataset} {alg}

gpu: the number of gpu
path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
alg: ERM, Fish, TRM or MLDG

CMNIST bash example: sh style_transfer/train_classifiers.sh 0 ./data CMNIST ERM

Step 2: Train controlled CycleGAN

python style_transfer/train_cyclegan.py --data_dir {path} --dataset {dataset} \
  --obj {obj} --name {name}

path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
obj: training objective (vanilla | orthogonal)
name: name of the model

CMNIST bash example: python style_transfer/train_cyclegan.py --data_dir ./data --dataset CMNIST --obj orthogonal --name cmnist

To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097

Evaluation and Generation

python style_transfer/generate.py --data_dir {path} --dataset {dataset} --name {name} \
 --obj {obj} --out_path {out_path} --resume_epoch {epoch} (--save)

path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
name: name of the model
obj: training objective (vanilla | orthogonal)
out_path: output path
epoch: resuming epoch of checkpoint

Images will be save to style_transfer/generated_images/out_path

CMNIST bash example: python style_transfer/generate.py --data_dir ./data --dataset CMNIST --name cmnist --obj orthogonal --out_path cmnist_out --resume_epoch 5


Domain Adaptation (DA) with label shifts

Prepare src/tgt pairs with label shifts

Please cd /da/data and run

python {dataset}.py --r {r0} {r1}

r0: subsample ratio for the first half classes (default=0.7)
r1: subsample ratio for the first half classes (default=0.3)
dataset: mnist | mnistm | svhn | cifar | stl | signs | digits

For SynthDigits / SynthSignsdataset, please download them at link_digits / link_signs. All the other datasets will be automatically downloaded 😉

Training

python da/vada_train.py --r {r0} {r1} --src {source} --tgt {target}  --seed {seed} \
 (--iw) (--orthogonal) (--source_only)

r0: subsample ratio for the first half classes (default=0.7)
r1: subsample ratio for the first half classes (default=0.3)
source: source domain (mnist | mnistm | svhn | cifar | stl | signs | digits)
target: target domain (mnist | mnistm | svhn | cifar | stl | signs | digits)
seed: random seed
--source_only: vanilla ERM on the source domain
--iw: use importance-weighted domain adaptation algorithm [1]
--orthogonal: use orthogonal classifier
--vada: vanilla VADA [2]

Fairness

python fairness/methods/train.py --data {data} --gamma {gamma} --sigma {sigma} \
 (--orthogonal) (--laftr) (--mifr) (--hsic)

data: dataset (adult | german)
gamma: hyper-parameter for MIFR, HSIC, LAFTR
sigma: hyper-parameter for HSIC (kernel width)
--orthogonal: use orthogonal classifier
--MIFR: use L-MIFR algorithm [3]
--HSIC: use ReBias algorithm [4]
--LAFTR: use LAFTR algorithm [5]



Reference

[1] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J. Gordon. Domain adaptation with conditional distribution matching and generalized label shift. ArXiv, abs/2003.04475, 2020.

[2] Rui Shu, H. Bui, H. Narui, and S. Ermon. A dirt-t approach to unsupervised domain adaptation. ArXiv, abs/1802.08735, 2018.

[3] Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and S. Ermon. Learning controllable fair representations. In AISTATS, 2019.

[4] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations with biased representations. In ICML, 2020.

[5] David Madras, Elliot Creager, T. Pitassi, and R. Zemel. Learning adversarially fair and transferable representations. In ICML, 2018.


The implementation of this repo is based on / inspired by:

Owner
Yilun Xu
Hello!
Yilun Xu
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022