Implementations of paper Controlling Directions Orthogonal to a Classifier

Overview

Classifier Orthogonalization

Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022,  Yilun Xu, Hao He, Tianxiao Shen, Tommi Jaakkola

Let's construct orthogonal classifiers for controlled style transfer, domain adaptation with label shifts and fairness problems 🤠 !

Outline

Controlled Style Transfer

Prepare CelebA-GH dataset:

python style_transfer/celeba_dataset.py --data_dir {path}

path: path to the CelebA dataset

bash example: python style_transfer/celeba_dataset.py --data_dir ./data

One can modify the domain_fn dictionary in the style_transfer/celeba_dataset.py file to create new groups 💡

Step 1: Train principal, full and oracle orthogonal classifiers

sh style_transfer/train_classifiers.sh {gpu} {path} {dataset} {alg}

gpu: the number of gpu
path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
alg: ERM, Fish, TRM or MLDG

CMNIST bash example: sh style_transfer/train_classifiers.sh 0 ./data CMNIST ERM

Step 2: Train controlled CycleGAN

python style_transfer/train_cyclegan.py --data_dir {path} --dataset {dataset} \
  --obj {obj} --name {name}

path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
obj: training objective (vanilla | orthogonal)
name: name of the model

CMNIST bash example: python style_transfer/train_cyclegan.py --data_dir ./data --dataset CMNIST --obj orthogonal --name cmnist

To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097

Evaluation and Generation

python style_transfer/generate.py --data_dir {path} --dataset {dataset} --name {name} \
 --obj {obj} --out_path {out_path} --resume_epoch {epoch} (--save)

path: path to the dataset (Celeba or MNIST)
dataset: dataset (Celeba | CMNIST)
name: name of the model
obj: training objective (vanilla | orthogonal)
out_path: output path
epoch: resuming epoch of checkpoint

Images will be save to style_transfer/generated_images/out_path

CMNIST bash example: python style_transfer/generate.py --data_dir ./data --dataset CMNIST --name cmnist --obj orthogonal --out_path cmnist_out --resume_epoch 5


Domain Adaptation (DA) with label shifts

Prepare src/tgt pairs with label shifts

Please cd /da/data and run

python {dataset}.py --r {r0} {r1}

r0: subsample ratio for the first half classes (default=0.7)
r1: subsample ratio for the first half classes (default=0.3)
dataset: mnist | mnistm | svhn | cifar | stl | signs | digits

For SynthDigits / SynthSignsdataset, please download them at link_digits / link_signs. All the other datasets will be automatically downloaded 😉

Training

python da/vada_train.py --r {r0} {r1} --src {source} --tgt {target}  --seed {seed} \
 (--iw) (--orthogonal) (--source_only)

r0: subsample ratio for the first half classes (default=0.7)
r1: subsample ratio for the first half classes (default=0.3)
source: source domain (mnist | mnistm | svhn | cifar | stl | signs | digits)
target: target domain (mnist | mnistm | svhn | cifar | stl | signs | digits)
seed: random seed
--source_only: vanilla ERM on the source domain
--iw: use importance-weighted domain adaptation algorithm [1]
--orthogonal: use orthogonal classifier
--vada: vanilla VADA [2]

Fairness

python fairness/methods/train.py --data {data} --gamma {gamma} --sigma {sigma} \
 (--orthogonal) (--laftr) (--mifr) (--hsic)

data: dataset (adult | german)
gamma: hyper-parameter for MIFR, HSIC, LAFTR
sigma: hyper-parameter for HSIC (kernel width)
--orthogonal: use orthogonal classifier
--MIFR: use L-MIFR algorithm [3]
--HSIC: use ReBias algorithm [4]
--LAFTR: use LAFTR algorithm [5]



Reference

[1] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J. Gordon. Domain adaptation with conditional distribution matching and generalized label shift. ArXiv, abs/2003.04475, 2020.

[2] Rui Shu, H. Bui, H. Narui, and S. Ermon. A dirt-t approach to unsupervised domain adaptation. ArXiv, abs/1802.08735, 2018.

[3] Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and S. Ermon. Learning controllable fair representations. In AISTATS, 2019.

[4] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning de-biased representations with biased representations. In ICML, 2020.

[5] David Madras, Elliot Creager, T. Pitassi, and R. Zemel. Learning adversarially fair and transferable representations. In ICML, 2018.


The implementation of this repo is based on / inspired by:

Owner
Yilun Xu
Hello!
Yilun Xu
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023