TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

Overview

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++ is a novel multi-object TSDF formulation that can encode multiple object surfaces at each voxel. In a multiple dynamic object tracking and reconstruction scenario, a TSDF++ map representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. At the same time, the representation allows maintaining a single volume for the entire scene and all the objects therein, thus solving the fundamental challenge of scalability with respect to the number of objects in the scene and removing the need for an explicit occlusion handling strategy.

Citing

When using TSDF++ in your research, please cite the following publication:

Margarita Grinvald, Federico Tombari, Roland Siegwart, and Juan Nieto, TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction, in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021. [Paper] [Video]

@article{grinvald2021tsdf,
  author={M. {Grinvald} and F. {Tombari} and R. {Siegwart} and J. {Nieto}},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  title={{TSDF++}: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction},
  year={2021},
}

Installation

The installation has been tested on Ubuntu 16.04 and Ubutnu 20.04.

Requirements

Install dependencies

Install ROS following the instructions at the ROS installation page. The full install (ros-kinetic-desktop-full, ros-melodic-desktop-full) are recommended.

Make sure to source your ROS setup.bash script by following the instructions on the ROS installation page.

Installation on Ubuntu

In your terminal, define the installed ROS version and name of the catkin workspace to use:

export ROS_VERSION=kinetic # (Ubuntu 16.04: kinetic, Ubuntu 18.04: melodic)
export CATKIN_WS=~/catkin_ws

If you don't have a catkin workspace yet, create a new one:

mkdir -p $CATKIN_WS/src && cd $CATKIN_WS
catkin init
catkin config --extend /opt/ros/$ROS_VERSION --merge-devel 
catkin config --cmake-args -DCMAKE_CXX_STANDARD=14 -DCMAKE_BUILD_TYPE=Release
wstool init src

Clone the tsdf-plusplus repository over HTTPS (no Github account required) and automatically fetch dependencies:

cd $CATKIN_WS/src
git clone https://github.com/ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_https.rosinstall
wstool update

Alternatively, clone over SSH (Github account required):

cd $CATKIN_WS/src
git clone [email protected]:ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_ssh.rosinstall
wstool update

Build and source the TSDF++ packages:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation
source ../devel/setup.bash # (bash shell: ../devel/setup.bash,  zsh shell: ../devel/setup.zsh)

Troubleshooting

Compilation freeze

By default catkin build on a computer with N CPU cores will run N make jobs simultaneously. If compilation seems to hang forever, it might be running low on RAM. Try limiting the number of maximum parallel build jobs through the -jN flag to a value way lower than your CPU count, i.e.

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j4

If it still freezes at compilation time, you can go as far as limiting the maximum number of parallel build jobs and max load to 1 through the -lN flag:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j1 -l1

License

The code is available under the MIT license.

Owner
ETHZ ASL
ETHZ ASL
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023