Neighborhood Reconstructing Autoencoders

Overview

Neighborhood Reconstructing Autoencoders

The official repository for (Lee, Kwon, and Park, NeurIPS 2021).

This paper proposes Neighborhood Reconstructing Autoencoders (NRAE), which is a graph-based autoencoder that explicitly accounts for the local connectivity and geometry of the data, and consequently learns a more accurate data manifold and representation.

Preview (synthetic data)

Figure 1: De-noising property of the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).
Figure 2: Correct local connectivity learned by the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).

Preview (rotated/shifted MNIST)

Figure 3: Generated sequences of rotated images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).
Figure 3: Generated sequences of shifted images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).

Environment

The project is developed under a standard PyTorch environment.

  • python 3.8.8
  • numpy
  • matplotlib
  • imageio
  • argparse
  • yaml
  • omegaconf
  • torch 1.8.0
  • CUDA 11.1

Running

python train_{X}.py --config configs/{A}_{B}_{C}.yml --device 0
  • X is either synthetic or MNIST
  • A is either AE, NRAEL, or NRAEQ
  • B is either toy or mnist
  • If B is toy, then C is either denoising or geometry_preserving. Elseif B is mnist, then C is either rotated or shifted.

Playing with the code

  • The most important parameters requiring tuning include: i) the number of nearest neighbors for graph construction num_nn and ii) kernel parameter lambda (you can find these parameters in configs/NRAEL_toy_denoising.yml for example).
  • We empirically observe that setting as include_center=True (when defining data loader) has performance advantange.
  • You can add a new type of 2d synthetic dataset in loader.synthetic_dataset.SyntheticData.get_data (currently, we have sincurve and swiss_roll).

Citation

If you found this library useful in your research, please consider citing:

@article{lee2021neighborhood,
  title={Neighborhood Reconstructing Autoencoders},
  author={Lee, Yonghyeon and Kwon, Hyeokjun and Park, Frank},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Yonghyeon Lee
Ph.D. Student in Robotics laboratory at the Seoul National University
Yonghyeon Lee
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022