Neighborhood Reconstructing Autoencoders

Overview

Neighborhood Reconstructing Autoencoders

The official repository for (Lee, Kwon, and Park, NeurIPS 2021).

This paper proposes Neighborhood Reconstructing Autoencoders (NRAE), which is a graph-based autoencoder that explicitly accounts for the local connectivity and geometry of the data, and consequently learns a more accurate data manifold and representation.

Preview (synthetic data)

Figure 1: De-noising property of the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).
Figure 2: Correct local connectivity learned by the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).

Preview (rotated/shifted MNIST)

Figure 3: Generated sequences of rotated images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).
Figure 3: Generated sequences of shifted images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).

Environment

The project is developed under a standard PyTorch environment.

  • python 3.8.8
  • numpy
  • matplotlib
  • imageio
  • argparse
  • yaml
  • omegaconf
  • torch 1.8.0
  • CUDA 11.1

Running

python train_{X}.py --config configs/{A}_{B}_{C}.yml --device 0
  • X is either synthetic or MNIST
  • A is either AE, NRAEL, or NRAEQ
  • B is either toy or mnist
  • If B is toy, then C is either denoising or geometry_preserving. Elseif B is mnist, then C is either rotated or shifted.

Playing with the code

  • The most important parameters requiring tuning include: i) the number of nearest neighbors for graph construction num_nn and ii) kernel parameter lambda (you can find these parameters in configs/NRAEL_toy_denoising.yml for example).
  • We empirically observe that setting as include_center=True (when defining data loader) has performance advantange.
  • You can add a new type of 2d synthetic dataset in loader.synthetic_dataset.SyntheticData.get_data (currently, we have sincurve and swiss_roll).

Citation

If you found this library useful in your research, please consider citing:

@article{lee2021neighborhood,
  title={Neighborhood Reconstructing Autoencoders},
  author={Lee, Yonghyeon and Kwon, Hyeokjun and Park, Frank},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Yonghyeon Lee
Ph.D. Student in Robotics laboratory at the Seoul National University
Yonghyeon Lee
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023