###################################################################
# #
# Structured Edge Detection Toolbox V3.0 #
# Piotr Dollar (pdollar-at-gmail.com) #
# #
###################################################################
1. Introduction.
Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy. Can serve as input to any vision algorithm requiring high quality edge maps. Toolbox also includes the Edge Boxes object proposal generation method and fast superpixel code.
If you use the Structured Edge Detection Toolbox, we appreciate it if you cite an appropriate subset of the following papers:
@inproceedings{DollarICCV13edges,
author = {Piotr Doll\'ar and C. Lawrence Zitnick},
title = {Structured Forests for Fast Edge Detection},
booktitle = {ICCV},
year = {2013},
}
@article{DollarARXIV14edges,
author = {Piotr Doll\'ar and C. Lawrence Zitnick},
title = {Fast Edge Detection Using Structured Forests},
journal = {ArXiv},
year = {2014},
}
@inproceedings{ZitnickECCV14edgeBoxes,
author = {C. Lawrence Zitnick and Piotr Doll\'ar},
title = {Edge Boxes: Locating Object Proposals from Edges},
booktitle = {ECCV},
year = {2014},
}
###################################################################
2. License.
This code is published under the MSR-LA Full Rights License.
Please read license.txt for more info.
###################################################################
3. Installation.
a) This code is written for the Matlab interpreter (tested with versions R2013a-2013b) and requires the Matlab Image Processing Toolbox.
b) Additionally, Piotr's Matlab Toolbox (version 3.26 or later) is also required. It can be downloaded at:
https://pdollar.github.io/toolbox/.
c) Next, please compile mex code from within Matlab (note: win64/linux64 binaries included):
mex private/edgesDetectMex.cpp -outdir private [OMPPARAMS]
mex private/edgesNmsMex.cpp -outdir private [OMPPARAMS]
mex private/spDetectMex.cpp -outdir private [OMPPARAMS]
mex private/edgeBoxesMex.cpp -outdir private
Here [OMPPARAMS] are parameters for OpenMP and are OS and compiler dependent.
Windows: [OMPPARAMS] = '-DUSEOMP' 'OPTIMFLAGS="$OPTIMFLAGS' '/openmp"'
Linux V1: [OMPPARAMS] = '-DUSEOMP' CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
Linux V2: [OMPPARAMS] = '-DUSEOMP' CXXFLAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
To compile without OpenMP simply omit [OMPPARAMS]; note that code will be single threaded in this case.
d) Add edge detection code to Matlab path (change to current directory first):
>> addpath(pwd); savepath;
e) Finally, optionally download the BSDS500 dataset (necessary for training/evaluation):
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
After downloading BSR/ should contain BSDS500, bench, and documentation.
f) A fully trained edge model for RGB images is available as part of this release. Additional models are available online, including RGBD/D/RGB models trained on the NYU depth dataset and a larger more accurate BSDS model.
###################################################################
4. Getting Started.
- Make sure to carefully follow the installation instructions above.
- Please see "edgesDemo.m", "edgeBoxesDemo" and "spDemo.m" to run demos and get basic usage information.
- For a detailed list of functionality see "Contents.m".
###################################################################
5. History.
Version NEW
- now hosting on github (https://github.com/pdollar/edges)
- suppress Mac warnings, added Mac binaries
- edgeBoxes: added adaptive nms variant described in arXiv15 paper
Version 3.01 (09/08/2014)
- spAffinities: minor fix (memory initialization)
- edgesDetect: minor fix (multiscale / multiple output case)
Version 3.0 (07/23/2014)
- added Edge Boxes code corresponding to ECCV paper
- added Sticky Superpixels code
- edge detection code unchanged
Version 2.0 (06/20/2014)
- second version corresponding to arXiv paper
- added sharpening option
- added evaluation and visualization code
- added NYUD demo and sweep support
- various tweaks/improvements/optimizations
Version 1.0 (11/12/2013)
- initial version corresponding to ICCV paper
###################################################################
Structured Edge Detection Toolbox
Overview
Plenoxels: Radiance Fields without Neural Networks
Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be
A simple Python configuration file operator.
A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)
Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"
Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"
Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)
DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.
GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http
An Unsupervised Detection Framework for Chinese Jargons in the Darknet
An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor
The VarCNN is an Convolution Neural Network based approach to automate Video Assistant Referee in football.
VarCnn: The Deep Learning Powered VAR
Continual World is a benchmark for continual reinforcement learning
Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th
implementation for paper "ShelfNet for fast semantic segmentation"
ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc
Simulated garment dataset for virtual try-on
Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via
Solution to the first stage Quiz of Hamoye internship: Introduction to Python for Machine Learning
Author Ayanwoye, Gideon Ayandele - [email protected] SOLUTION TO HAMOYE STA
🔀 Visual Room Rearrangement
AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha
Code repository for our paper regarding the L3D dataset.
The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch
disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
level1-image-classification-level1-recsys-09 created by GitHub Classroom
level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?