###################################################################
# #
# Structured Edge Detection Toolbox V3.0 #
# Piotr Dollar (pdollar-at-gmail.com) #
# #
###################################################################
1. Introduction.
Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy. Can serve as input to any vision algorithm requiring high quality edge maps. Toolbox also includes the Edge Boxes object proposal generation method and fast superpixel code.
If you use the Structured Edge Detection Toolbox, we appreciate it if you cite an appropriate subset of the following papers:
@inproceedings{DollarICCV13edges,
author = {Piotr Doll\'ar and C. Lawrence Zitnick},
title = {Structured Forests for Fast Edge Detection},
booktitle = {ICCV},
year = {2013},
}
@article{DollarARXIV14edges,
author = {Piotr Doll\'ar and C. Lawrence Zitnick},
title = {Fast Edge Detection Using Structured Forests},
journal = {ArXiv},
year = {2014},
}
@inproceedings{ZitnickECCV14edgeBoxes,
author = {C. Lawrence Zitnick and Piotr Doll\'ar},
title = {Edge Boxes: Locating Object Proposals from Edges},
booktitle = {ECCV},
year = {2014},
}
###################################################################
2. License.
This code is published under the MSR-LA Full Rights License.
Please read license.txt for more info.
###################################################################
3. Installation.
a) This code is written for the Matlab interpreter (tested with versions R2013a-2013b) and requires the Matlab Image Processing Toolbox.
b) Additionally, Piotr's Matlab Toolbox (version 3.26 or later) is also required. It can be downloaded at:
https://pdollar.github.io/toolbox/.
c) Next, please compile mex code from within Matlab (note: win64/linux64 binaries included):
mex private/edgesDetectMex.cpp -outdir private [OMPPARAMS]
mex private/edgesNmsMex.cpp -outdir private [OMPPARAMS]
mex private/spDetectMex.cpp -outdir private [OMPPARAMS]
mex private/edgeBoxesMex.cpp -outdir private
Here [OMPPARAMS] are parameters for OpenMP and are OS and compiler dependent.
Windows: [OMPPARAMS] = '-DUSEOMP' 'OPTIMFLAGS="$OPTIMFLAGS' '/openmp"'
Linux V1: [OMPPARAMS] = '-DUSEOMP' CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
Linux V2: [OMPPARAMS] = '-DUSEOMP' CXXFLAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
To compile without OpenMP simply omit [OMPPARAMS]; note that code will be single threaded in this case.
d) Add edge detection code to Matlab path (change to current directory first):
>> addpath(pwd); savepath;
e) Finally, optionally download the BSDS500 dataset (necessary for training/evaluation):
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
After downloading BSR/ should contain BSDS500, bench, and documentation.
f) A fully trained edge model for RGB images is available as part of this release. Additional models are available online, including RGBD/D/RGB models trained on the NYU depth dataset and a larger more accurate BSDS model.
###################################################################
4. Getting Started.
- Make sure to carefully follow the installation instructions above.
- Please see "edgesDemo.m", "edgeBoxesDemo" and "spDemo.m" to run demos and get basic usage information.
- For a detailed list of functionality see "Contents.m".
###################################################################
5. History.
Version NEW
- now hosting on github (https://github.com/pdollar/edges)
- suppress Mac warnings, added Mac binaries
- edgeBoxes: added adaptive nms variant described in arXiv15 paper
Version 3.01 (09/08/2014)
- spAffinities: minor fix (memory initialization)
- edgesDetect: minor fix (multiscale / multiple output case)
Version 3.0 (07/23/2014)
- added Edge Boxes code corresponding to ECCV paper
- added Sticky Superpixels code
- edge detection code unchanged
Version 2.0 (06/20/2014)
- second version corresponding to arXiv paper
- added sharpening option
- added evaluation and visualization code
- added NYUD demo and sweep support
- various tweaks/improvements/optimizations
Version 1.0 (11/12/2013)
- initial version corresponding to ICCV paper
###################################################################
Structured Edge Detection Toolbox
Overview
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network
DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021
ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar
Node Editor Plug for Blender
NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.
ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo
Sequence to Sequence Models with PyTorch
Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha
This's an implementation of deepmind Visual Interaction Networks paper using pytorch
Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima
Learning 3D Part Assembly from a Single Image
Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single
Official repo for QHack—the quantum machine learning hackathon
Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"
KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme
A PyTorch-Based Framework for Deep Learning in Computer Vision
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI
MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys
OCR-D wrapper for detectron2 based segmentation models
ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm
Repository for self-supervised landmark discovery
self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i
Hierarchical Attentive Recurrent Tracking
Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte
Pyramid Pooling Transformer for Scene Understanding
Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0