Structured Edge Detection Toolbox

Related tags

Deep Learningedges
Overview
###################################################################
#                                                                 #
#    Structured Edge Detection Toolbox V3.0                       #
#    Piotr Dollar (pdollar-at-gmail.com)                          #
#                                                                 #
###################################################################

1. Introduction.

Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy. Can serve as input to any vision algorithm requiring high quality edge maps. Toolbox also includes the Edge Boxes object proposal generation method and fast superpixel code.

If you use the Structured Edge Detection Toolbox, we appreciate it if you cite an appropriate subset of the following papers:

@inproceedings{DollarICCV13edges,
  author    = {Piotr Doll\'ar and C. Lawrence Zitnick},
  title     = {Structured Forests for Fast Edge Detection},
  booktitle = {ICCV},
  year      = {2013},
}

@article{DollarARXIV14edges,
  author    = {Piotr Doll\'ar and C. Lawrence Zitnick},
  title     = {Fast Edge Detection Using Structured Forests},
  journal   = {ArXiv},
  year      = {2014},
}

@inproceedings{ZitnickECCV14edgeBoxes,
  author    = {C. Lawrence Zitnick and Piotr Doll\'ar},
  title     = {Edge Boxes: Locating Object Proposals from Edges},
  booktitle = {ECCV},
  year      = {2014},
}

###################################################################

2. License.

This code is published under the MSR-LA Full Rights License.
Please read license.txt for more info.

###################################################################

3. Installation.

a) This code is written for the Matlab interpreter (tested with versions R2013a-2013b) and requires the Matlab Image Processing Toolbox. 

b) Additionally, Piotr's Matlab Toolbox (version 3.26 or later) is also required. It can be downloaded at:
 https://pdollar.github.io/toolbox/.

c) Next, please compile mex code from within Matlab (note: win64/linux64 binaries included):
  mex private/edgesDetectMex.cpp -outdir private [OMPPARAMS]
  mex private/edgesNmsMex.cpp    -outdir private [OMPPARAMS]
  mex private/spDetectMex.cpp    -outdir private [OMPPARAMS]
  mex private/edgeBoxesMex.cpp   -outdir private
Here [OMPPARAMS] are parameters for OpenMP and are OS and compiler dependent.
  Windows:  [OMPPARAMS] = '-DUSEOMP' 'OPTIMFLAGS="$OPTIMFLAGS' '/openmp"'
  Linux V1: [OMPPARAMS] = '-DUSEOMP' CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
  Linux V2: [OMPPARAMS] = '-DUSEOMP' CXXFLAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
To compile without OpenMP simply omit [OMPPARAMS]; note that code will be single threaded in this case.

d) Add edge detection code to Matlab path (change to current directory first): 
 >> addpath(pwd); savepath;

e) Finally, optionally download the BSDS500 dataset (necessary for training/evaluation):
 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
 After downloading BSR/ should contain BSDS500, bench, and documentation.

f) A fully trained edge model for RGB images is available as part of this release. Additional models are available online, including RGBD/D/RGB models trained on the NYU depth dataset and a larger more accurate BSDS model.

###################################################################

4. Getting Started.

 - Make sure to carefully follow the installation instructions above.
 - Please see "edgesDemo.m", "edgeBoxesDemo" and "spDemo.m" to run demos and get basic usage information.
 - For a detailed list of functionality see "Contents.m".

###################################################################

5. History.

Version NEW
 - now hosting on github (https://github.com/pdollar/edges)
 - suppress Mac warnings, added Mac binaries
 - edgeBoxes: added adaptive nms variant described in arXiv15 paper

Version 3.01 (09/08/2014)
 - spAffinities: minor fix (memory initialization)
 - edgesDetect: minor fix (multiscale / multiple output case)

Version 3.0 (07/23/2014)
 - added Edge Boxes code corresponding to ECCV paper
 - added Sticky Superpixels code
 - edge detection code unchanged

Version 2.0 (06/20/2014)
 - second version corresponding to arXiv paper
 - added sharpening option
 - added evaluation and visualization code
 - added NYUD demo and sweep support
 - various tweaks/improvements/optimizations

Version 1.0 (11/12/2013)
 - initial version corresponding to ICCV paper

###################################################################
Owner
Piotr Dollar
Piotr Dollar
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022