Structured Edge Detection Toolbox

Related tags

Deep Learningedges
Overview
###################################################################
#                                                                 #
#    Structured Edge Detection Toolbox V3.0                       #
#    Piotr Dollar (pdollar-at-gmail.com)                          #
#                                                                 #
###################################################################

1. Introduction.

Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy. Can serve as input to any vision algorithm requiring high quality edge maps. Toolbox also includes the Edge Boxes object proposal generation method and fast superpixel code.

If you use the Structured Edge Detection Toolbox, we appreciate it if you cite an appropriate subset of the following papers:

@inproceedings{DollarICCV13edges,
  author    = {Piotr Doll\'ar and C. Lawrence Zitnick},
  title     = {Structured Forests for Fast Edge Detection},
  booktitle = {ICCV},
  year      = {2013},
}

@article{DollarARXIV14edges,
  author    = {Piotr Doll\'ar and C. Lawrence Zitnick},
  title     = {Fast Edge Detection Using Structured Forests},
  journal   = {ArXiv},
  year      = {2014},
}

@inproceedings{ZitnickECCV14edgeBoxes,
  author    = {C. Lawrence Zitnick and Piotr Doll\'ar},
  title     = {Edge Boxes: Locating Object Proposals from Edges},
  booktitle = {ECCV},
  year      = {2014},
}

###################################################################

2. License.

This code is published under the MSR-LA Full Rights License.
Please read license.txt for more info.

###################################################################

3. Installation.

a) This code is written for the Matlab interpreter (tested with versions R2013a-2013b) and requires the Matlab Image Processing Toolbox. 

b) Additionally, Piotr's Matlab Toolbox (version 3.26 or later) is also required. It can be downloaded at:
 https://pdollar.github.io/toolbox/.

c) Next, please compile mex code from within Matlab (note: win64/linux64 binaries included):
  mex private/edgesDetectMex.cpp -outdir private [OMPPARAMS]
  mex private/edgesNmsMex.cpp    -outdir private [OMPPARAMS]
  mex private/spDetectMex.cpp    -outdir private [OMPPARAMS]
  mex private/edgeBoxesMex.cpp   -outdir private
Here [OMPPARAMS] are parameters for OpenMP and are OS and compiler dependent.
  Windows:  [OMPPARAMS] = '-DUSEOMP' 'OPTIMFLAGS="$OPTIMFLAGS' '/openmp"'
  Linux V1: [OMPPARAMS] = '-DUSEOMP' CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
  Linux V2: [OMPPARAMS] = '-DUSEOMP' CXXFLAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
To compile without OpenMP simply omit [OMPPARAMS]; note that code will be single threaded in this case.

d) Add edge detection code to Matlab path (change to current directory first): 
 >> addpath(pwd); savepath;

e) Finally, optionally download the BSDS500 dataset (necessary for training/evaluation):
 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
 After downloading BSR/ should contain BSDS500, bench, and documentation.

f) A fully trained edge model for RGB images is available as part of this release. Additional models are available online, including RGBD/D/RGB models trained on the NYU depth dataset and a larger more accurate BSDS model.

###################################################################

4. Getting Started.

 - Make sure to carefully follow the installation instructions above.
 - Please see "edgesDemo.m", "edgeBoxesDemo" and "spDemo.m" to run demos and get basic usage information.
 - For a detailed list of functionality see "Contents.m".

###################################################################

5. History.

Version NEW
 - now hosting on github (https://github.com/pdollar/edges)
 - suppress Mac warnings, added Mac binaries
 - edgeBoxes: added adaptive nms variant described in arXiv15 paper

Version 3.01 (09/08/2014)
 - spAffinities: minor fix (memory initialization)
 - edgesDetect: minor fix (multiscale / multiple output case)

Version 3.0 (07/23/2014)
 - added Edge Boxes code corresponding to ECCV paper
 - added Sticky Superpixels code
 - edge detection code unchanged

Version 2.0 (06/20/2014)
 - second version corresponding to arXiv paper
 - added sharpening option
 - added evaluation and visualization code
 - added NYUD demo and sweep support
 - various tweaks/improvements/optimizations

Version 1.0 (11/12/2013)
 - initial version corresponding to ICCV paper

###################################################################
Owner
Piotr Dollar
Piotr Dollar
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022