Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Overview

Awesome Few-Shot Object Detection (FSOD)

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Maintainers: Gabriel Huang

For an introduction to the few-shot object detection framework read below, or check our our survey on few-shot and self-supervised object detection and its project page for full explanations, discussions on the pitfalls of the Pascal, COCO, and LVIS benchmarks used below, main takeaways and future research directions.

Contributing

If you want to add your paper or report a mistake, please create a pull request with all supporting information. Thanks!

Pascal VOC and MS COCO FSOD Leaderboard

In this table we distinguish Kang's Splits (Meta-YOLO) from TFA's splits (Frustratingly Simple FSOD), as the Kang splits have been shown to have high variance and overestimate performance for low number of shots (see for yourself -- check the difference between TFA 1-shot and Kang 1-shot in the table below).

Name Type VOC TFA 1-shot (mAP50) VOC TFA 3-shot (mAP50) VOC TFA 10-shot (mAP50) VOC Kang 1-shot (mAP50) VOC Kang 3-shot (mAP50) VOC Kang 10-shot (mAP50) MS COCO 10-shot (mAP) MS COCO 30-shot (mAP)
LSTD finetuning - - - 8.2 12.4 38.5 - -
RepMet prototype - - - 26.1 34.4 41.3 - -
Meta-YOLO modulation 14.2 29.8 - 14.8 26.7 47.2 5.6 9.1
MetaDet modulation - - - 18.9 30.2 49.6 7.1 11.3
Meta-RCNN modulation - - - 19.9 35.0 51.5 8.7 12.4
Faster RCNN+FT finetuning 9.9 21.6 35.6 15.2 29.0 45.5 9.2 12.5
ACM-MetaRCNN modulation - - - 31.9 35.9 53.1 9.4 12.8
TFA w/fc finetuning 22.9 40.4 52.0 36.8 43.6 57.0 10.0 13.4
TFA w/cos finetuning 25.3 42.1 52.8 39.8 44.7 56.0 10.0 13.7
Retentive RCNN finetuning - - - 42.0 46.0 56.0 10.5 13.8
MPSR finetuning - - - 41.7 51.4 61.8 9.8 14.1
Attention-FSOD modulation - - - - - - 12.0 -
FsDetView finetuning 24.2 42.2 57.4 - - - 12.5 14.7
CME finetuning - - - 41.5 50.4 60.9 15.1 16.9
TIP add-on 27.7 43.3 59.6 - - - 16.3 18.3
DAnA modulation - - - - - - 18.6 21.6
DeFRCN prototype - - - 53.6 61.5 60.8 18.5 22.6
Meta-DETR modulation 20.4 46.6 57.8 - - - 17.8 22.9
DETReg finetuning - - - - - - 18.0 30.0

Few-Shot Object Detection Explained

We explain the few-shot object detection framework as defined by the Meta-YOLO paper (Kang's splits - full details here). FSOD partitions objects into two disjoint sets of categories: base or known/source classes, which are object categories for which we have access to a large number of training examples; and novel or unseen/target classes, for which we have only a few training examples (shots) per class. The FSOD task is formalized into the following steps:

  • 1. Base training.¹ Annotations are given only for the base classes, with a large number of training examples per class (bikes in the example). We train the FSOD method on the base classes.
  • 2. Few-shot finetuning. Annotations are given for the support set, a very small number of training examples from both the base and novel classes (one bike and one human in the example). Most methods finetune the FSOD model on the support set, but some methods might only use the support set for conditioning during evaluation (finetuning-free methods).
  • 3. Few-shot evaluation. We evaluate the FSOD to jointly detect base and novel classes from the test set (few-shot refers to the size of the support set). The performance metrics are reported separately for base and novel classes. Common evaluation metrics are variants of the mean average precision: mAP50 for Pascal and COCO-style mAP for COCO. They are often denoted bAP50, bAP75, bAP (resp. nAP50, nAP75, nAP) for the base and novel classes respectively, where the number is the IoU-threshold in percentage.

In pure FSOD, methods are usually compared solely on the basis of novel class performance, whereas in Generalized FSOD, methods are compared on both base and novel class performances [2]. Note that "training" and "test" set refer to the splits used in traditional object detection. Base and novel classes are typically present in both the training and testing sets; however, the novel class annotations are filtered out from the training set during base training; during few-shot finetuning, the support set is typically taken to be a (fixed) subset of the training set; during few-shot evaluation, all of the test set is used to reduce uncertainty [1].

For conditioning-based methods with no finetuning, few-shot finetuning and few-shot evaluation are merged into a single step; the novel examples are used as support examples to condition the model, and predictions are made directly on the test set. In practice, the majority of conditioning-based methods reviewed in this survey do benefit from some form of finetuning.

*¹In the context of self-supervised learning, base-training may also be referred to as finetuning or training. This should not be confused with base training in the meta-learning framework; rather this is similar to the meta-training phase [3].

Owner
Gabriel Huang
PhD student at MILA
Gabriel Huang
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
wlad 2 Dec 19, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022