Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Overview

Scene Graph Generation

Object Detections Ground truth Scene Graph Generated Scene Graph

In this visualization, woman sitting on rock is a zero-shot triplet, which means that the combination of woman, sitting on and rock has never been observed during training. However, each of the object and predicate has been observed, but together with other objects and predicate. For example, woman sitting on chair has been observed and is not a zero-shot triplet. Making correct predictions for zero-shots is very challenging, so in our papers [1,2] we address this problem and improve zero-shot as well as few-shot results. See examples of zero-shots in the Visual Genome (VG) dataset at Zero_Shot_VG.ipynb.

This repository accompanies two papers:

See the code for my another ICCV 2021 paper Context-aware Scene Graph Generation with Seq2Seq Transformers at https://github.com/layer6ai-labs/SGG-Seq2Seq.

The code in this repo is based on the amazing code for Neural Motifs by Rowan Zellers. Our code uses torchvision.models.detection, so can be run in PyTorch 1.2 or later.

Weights and Biases

Weights and Biases is a cool tool to track your machine learning experiments that I used in this project. It is free (in most cases) and very user-friendly, which is very helpful for complex projects with lots of metrics (like SGG).

See our Weights and Biases (W & B) project for the results on different SGG metrics and training curves.

Requirements

  • Python >= 3.6
  • PyTorch >= 1.2
  • Other standard Python libraries

Should be enough to install these libraries (in addition to PyTorch):

conda install -c anaconda h5py cython dill pandas
conda install -c conda-forge pycocotools tqdm

Results in our papers [1,2] were obtained on a single GPU 1080Ti/2080Ti/RTX6000 with 11-24GB of GPU memory and 32GB of RAM. MultiGPU training is unfortunately not supported in this repo.

To use the edge feature model from Rowan Zellers' model implementations (default argument -edge_model motifs in our code), it is necessary to build the following function:

cd lib/draw_rectangles; python setup.py build_ext --inplace; cd ../..;

Data

Visual Genome or GQA data will be automatically downloaded after the first call of python main.py -data $data_path. After downloading, the script will generate the following directories (make sure you have at least 60GB of disk space in $data_path):

data_path
│   VG
│   │   VG.tar
│   │   VG_100K (this will appear after extracting VG.tar)
│   │   ...
│
└───GQA # optional
│   │   GQA_scenegraphs.tar
│   │   sceneGraphs (this will appear after extracting GQA_scenegraphs.tar)
|   |   ...

If downloading fails, you can download manually using the links from lib/download.py. Alternatively, the VG can be downloaded following Rowan Zellers' instructions, while GQA can be downloaded from the GQA official website.

To train SGG models on VG, download Rowan Zellers' VGG16 detector checkpoint and save it as ./data/VG/vg-faster-rcnn.tar.

To train our GAN models from [2], it is necessary to first extract and save real object features from the training set of VG by running:

python extract_features.py -data ./data/ -ckpt ./data/VG/vg-faster-rcnn.tar -save_dir ./data/VG/

The script will generate ./data/VG/features.hdf5 of around 30GB.

Example from [1]: Improved edge loss

Our improved edge loss from [1] can be added to any SGG model that predicts edge labels rel_dists, which is a float valued tensor of shape (M,R), where R is the total number of predicate classes (e.g. 51 in Visual Genome). M is the total number of edges in a batch of scene graphs, including the background edges (edges without any semantic relationships).

The baseline loss used in most SGG works simply computes the cross-entropy between rel_dists and ground truth edge labels rel_labels (an integer tensor of length M):

baseline_edge_loss = torch.nn.functional.cross_entropy(rel_dists, rel_labels)

Our improved edge loss takes into account the extreme imbalance between the foreground and background edge terms. Foreground edges are those that have semantic ground truth annotations (e.g. on, has, wearing, etc.). In datasets like Visual Genome, scene graph annotations are extremely sparse, i.e. the number of foreground edges (M_FG) is significantly lower than the total number of edges M.

baseline_edge_loss = torch.nn.functional.cross_entropy(rel_dists, rel_labels)
M = len(rel_labels)
M_FG = torch.sum(rel_labels > 0)
our_edge_loss = baseline_edge_loss * M / M_FG

Our improved loss significantly improves all SGG metrics, in particular zero and few shots. See [1] for the results and discussion why our loss works well.

See the full code of different losses in lib/losses.py.

Example from [2]: Generative Adversarial Networks (GANs)

In this example I provide the pseudo code for adding the GAN model to a given SGG model. See the full code in main.py.

from torch.nn.functional import cross_entropy as CE

# Assume the SGG model (sgg_model) returns features for 
# nodes (nodes_real) and edges (edges_real) as well as global features (fmap_real).

# 1. Main SGG model object and relationship classification losses (L_CLS)

obj_dists, rel_dists = sgg_model.predict(nodes_real, edges_real)  # predict node and edge labels
node_loss = CE(obj_dists, gt_objects)
M = len(rel_labels)
M_FG = torch.sum(rel_labels > 0)
our_edge_loss = CE(rel_dists, rel_labels) *  M / M_FG  # use our improved edge loss from [1]

L_CLS = node_loss + our_edge_loss  # SGG total loss from [1]
L_CLS.backward()
F_optimizer.step()  # update the sgg_model (main SGG model F)

# 2. GAN-based updates

# Scene Graph perturbations (optional)
gt_objects_fake = sgp.perturb(gt_objects, gt_rels)  # we only perturb nodes (object labels)

# Generate global feature maps using our GAN conditioned on (perturbed) scene graphs
fmap_fake = gan(gt_objects_fake, gt_boxes, gt_rels)

# Extract node and edge features from fmap_fake
nodes_fake, edges_fake = sgg_model.node_edge_features(fmap_fake)

# Make SGG predictions for the node and edge features 
# Detach the gradients to avoid bad collaboration of G and F
obj_dists_fake, rel_dists_fake = sgg_model.predict(nodes_fake.detach(),
                                                   edges_fake.detach())

# 2.1. Generator (G) losses

# Adversarial losses
L_ADV_G_nodes = gan.loss(nodes_fake, labels_fake=gt_objects_fake)
L_ADV_G_edges = gan.loss(edges_fake, labels_fake=rel_labels)
L_ADV_G_global = gan.loss(fmap_fake)

# Reconstruction losses
L_REC_nodes = CE(obj_dists_fake, gt_objects_fake)
L_REC_edges = CE(rel_dists_fake, rel_labels) *  M / M_FG  # use our improved edge loss from [1]

# Total G loss
loss_G_F = L_ADV_G_nodes + L_ADV_G_edges + L_ADV_G_global + L_REC_nodes + L_REC_edges
loss_G_F.backward()
F_optimizer.step()  # update the sgg_model (main SGG model F)
G_optimizer.step()  # update the generator (G) of the GAN

# 2.1. Discriminator (D) losses

# Adversarial losses
L_ADV_D_nodes = gan.loss(node_real, nodes_fake, labels_fake=gt_objects_fake, labels_real=gt_objects)
L_ADV_D_edges = gan.loss(edge_real, edges_fake, labels_fake=rel_labels, labels_real=rel_labels)
L_ADV_D_global = gan.loss(fmap_real, fmap_fake)

# Total D loss
loss_D = L_ADV_D_nodes + L_ADV_D_edges + L_ADV_D_global
loss_D.backward()  # update the discriminator (D) of the GAN
D_optimizer.step()

Adding our GAN also consistently improves all SGG metrics. See [2] for the results, model description and analysis.

Visual Genome (VG)

SGCls/PredCls

Results of [email protected] are reported below obtained using Faster R-CNN with VGG16 as a backbone. No graph constraint evaluation is used. For graph constraint results and other details, see the W&B project.

Model Paper Checkpoint W & B Zero-Shots 10-shots 100-shots All-shots
IMP+1 IMP / Neural Motifs link link 8.7 19.2 38.4 47.8
IMP++2 our BMVC 2020 link link 8.8 21.6 40.6 48.7
IMP++ with GAN3 our ICCV 2021 link link 9.3 22.2 41.5 50.0
IMP++ with GAN and GraphN scene graph perturbations4 our ICCV 2021 link link 10.2 21.7 40.9 49.8
  • 1: python main.py -data ./data -ckpt ./data/vg-faster-rcnn.tar -save_dir ./results/IMP_baseline -loss baseline -b 24

  • 2: python main.py -data ./data -ckpt ./data/vg-faster-rcnn.tar -save_dir ./results/IMP_dnorm -loss dnorm -b 24

  • 3:python main.py -data ./data -ckpt ./data/vg-faster-rcnn.tar -save_dir ./results/IMP_GAN -loss dnorm -b 24 -gan -largeD -vis_cond ./data/VG/features.hdf5

  • 4:python main.py -data ./data -ckpt ./data/vg-faster-rcnn.tar -save_dir ./results/IMP_GAN_graphn -loss dnorm -b 24 -gan -largeD -vis_cond ./data/VG/features.hdf5 -perturb graphn -L 0.2 -topk 5 -graphn_a 2

Evaluation on the VG test set will be run at the end of the training script. To re-run evaluation: python main.py -data ./data -ckpt ./results/IMP_GAN_graphn/vgrel.pth -pred_weight $x, where $x is the weight for rare predicate classes, which is 1 for default, but can be increased to improve certain metrics like mean recall (see the Appendix in our paper [2] for more details).

Generated Feature Quality

To inspect the features generated with GANs, it is necessary to first extract and save node/edge/global features. This can be done similarly to the code in extract_features.py, but replacing the real features with the ones produced by the GAN.

See this jupyter notebook to inspect generated feature quality.

Scene Graph Perturbations

See this jupyter notebook to inspect scene graph perturbation methods.

SGGen (optional)

Please follow the details in our papers to obtain SGGen/SGDet results, which are based on using the original Neural Motifs code.

Pull-requests to add training and evaluation SGGen/SGDet models with the VGG16 or another backbone are welcome.

GQA

Note: these instructions are for our BMVC 2020 paper [1] and have not been tested in the last version of the repo

SGCls/PredCls

To train an SGCls/PredCls model with our loss on GQA: python main.py -data ./data -loss dnorm -split gqa -lr 0.002 -save_dir ./results/GQA_sgcls # takes about 1 day. Or download our GQA-SGCls-1 checkpoint

In the trained checkpoints of this repo I used a slightly different edge model in UnionBoxesAndFeats -edge_model raw_boxes. To use Neural Motifs's edge model, use flag -edge_model motifs (default in the current version of the repo).

SGGen (optional)

Follow these steps to train and evaluate an SGGen model on GQA:

  1. Fine-tune Mask R-CNN on GQA: python pretrain_detector.py gqa ./data ./results/pretrain_GQA # takes about 1 day. Or download our GQA-detector checkpoint

  2. Train SGCls: python main.py -data ./data -lr 0.002 -split gqa -nosave -loss dnorm -ckpt ./results/pretrain_GQA/gqa_maskrcnn_res50fpn.pth -save_dir ./results/GQA_sgdet # takes about 1 day. Or download our GQA-SGCls-2 checkpoint. This checkpoint is different from SGCls-1, because here the model is trained on the features of the GQA-pretrained detector. This checkpoint can be used in the next step.

  3. Evaluate SGGen: python main.py -data ./data -split gqa -ckpt ./results/GQA_sgdet/vgrel.pth -m sgdet -nosave -nepoch 0 # takes a couple hours

Visualizations

See an example of detecting objects and obtaining scene graphs for GQA test images at Scene_Graph_Predictions_GQA.ipynb.

Citation

Please use these references to cite our papers or code:

@inproceedings{knyazev2020graphdensity,
  title={Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation},
  author={Knyazev, Boris and de Vries, Harm and Cangea, Cătălina and Taylor, Graham W and Courville, Aaron and Belilovsky, Eugene},
  booktitle={British Machine Vision Conference (BMVC)},
  pdf={http://arxiv.org/abs/2005.08230},
  year={2020}
}
@inproceedings{knyazev2020generative,
  title={Generative Compositional Augmentations for Scene Graph Prediction},
  author={Boris Knyazev and Harm de Vries and Cătălina Cangea and Graham W. Taylor and Aaron Courville and Eugene Belilovsky},
  booktitle={International Conference on Computer Vision (ICCV)},
  pdf={https://arxiv.org/abs/2007.05756},
  year={2021}
}
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022