SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

Related tags

Deep LearningSCALoss
Overview

SCALoss

PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022).

Introduction

corner_center_comp

  • IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes with slow convergence speed.
  • Side Overlap can put more penalty for low overlapping bounding box cases and Corner Distance can speed up the convergence.
  • SCALoss, which combines Side Overlap and Corner Distance, can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed.

Prerequisites

Install

Conda is not necessary for the installation. Nevertheless, the installation process here is described using it.

$ conda create -n sca-yolo python=3.8 -y
$ conda activate sca-yolo
$ git clone https://github.com/Turoad/SCALoss
$ cd SCALoss
$ pip install -r requirements.txt

Getting started

Train a model:

python train.py --data [dataset config] --cfg [model config] --weights [path of pretrain weights] --batch-size [batch size num]

For example, to train yolov3-tiny on COCO dataset from scratch with batch size=128.

python train.py --data coco.yaml --cfg yolov3-tiny.yaml --weights '' --batch-size 128

For multi-gpu training, it is recommended to use:

python -m torch.distributed.launch --nproc_per_node 4 train.py --img 640 --batch 32 --epochs 300 --data coco.yaml --weights '' --cfg yolov3.yaml --device 0,1,2,3

Test a model:

python val.py --data coco.yaml --weights runs/train/exp15/weights/last.pt --img 640 --iou-thres=0.65

Results and Checkpoints

YOLOv3-tiny

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 18.8 36.2 27.2 17.3 11.6 1.9
GIoU
relative improv.(%)
18.8
0%
36.2
0%
27.1
-0.37%
17.6
1.73%
11.8
1.72%
2.1
10.53%
DIoU
relative improv.(%)
18.8
0%
36.4
0.55%
26.9
-1.1%
17.2
-0.58%
11.8
1.72%
1.9
0%
CIoU
relative improv.(%)
18.9
0.53%
36.6
1.1%
27.3
0.37%
17.2
-0.58%
11.6
0%
2.1
10.53%
SCA
relative improv.(%)
19.9
5.85%
36.6
1.1%
28.3
4.04%
19.1
10.4%
13.3
14.66%
2.7
42.11%

The convergence curves of different losses on YOLOV3-tiny: converge curve

YOLOv3

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 44.8 64.2 57.5 48.8 41.8 20.7
GIoU
relative improv.(%)
44.7
-0.22%
64.4
0.31%
57.5
0%
48.5
-0.61%
42
0.48%
20.4
-1.45%
DIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
42.1
0.72%
19.8
-4.35%
CIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
41.7
-0.24%
19.8
-4.35%
SCA
relative improv.(%)
45.3
1.12%
64.1
-0.16%
57.9
0.7%
49.9
2.25%
43.3
3.59%
21.4
3.38%

YOLOV5s

comming soon

Citation

If our paper and code are beneficial to your work, please consider citing:

@inproceedings{zheng2022scaloss,
  title={SCALoss: Side and Corner Aligned Loss for Bounding Box Regression},
  author={Zheng, Tu and Zhao, Shuai and Liu, Yang and Liu, Zili and Cai, Deng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Acknowledgement

The code is modified from ultralytics/yolov3.

You might also like...
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Official PyTorch implementation of
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

Repository for
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Owner
TuZheng
TuZheng
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022