Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Overview

Deep Constrained Least Squares for Blind Image Super-Resolution

[Paper]

This is the official implementation of 'Deep Constrained Least Squares for Blind Image Super-Resolution', CVPR 2022.

Updates

[2022.03.09] We released the code and provided the pretrained model weights here.
[2022.03.02] Our paper has been accepted by CVPR 2022.

DCLS

Overview

DCLS

Dependenices

  • OS: Ubuntu 18.04
  • nvidia :
    • cuda: 10.1
    • cudnn: 7.6.1
  • python3
  • pytorch >= 1.6
  • Python packages: numpy opencv-python lmdb pyyaml

Dataset Preparation

We use DIV2K and Flickr2K as our training datasets (totally 3450 images).

To transform datasets to binary files for efficient IO, run:

python3 codes/scripts/create_lmdb.py

For evaluation of Isotropic Gaussian kernels (Gaussian8), we use five datasets, i.e., Set5, Set14, Urban100, BSD100 and Manga109.

To generate LRblur/LR/HR/Bicubic datasets paths, run:

python3 codes/scripts/generate_mod_blur_LR_bic.py

For evaluation of Anisotropic Gaussian kernels, we use DIV2KRK.

(You need to modify the file paths by yourself.)

Train

  1. The core algorithm is in codes/config/DCLS.
  2. Please modify codes/config/DCLS/options to set path, iterations, and other parameters...
  3. To train the model(s) in the paper, run below commands.

For single GPU:

cd codes/config/DCLS
python3 train.py -opt=options/setting1/train_setting1_x4.yml

For distributed training

cd codes/config/DCLS
python3 -m torch.distributed.launch --nproc_per_node=4 --master_poer=4321 train.py -opt=options/setting1/train_setting1_x4.yml --launcher pytorch

Or choose training options use

cd codes/config/DCLS
sh demo.sh

Evaluation

To evalute our method, please modify the benchmark path and model path and run

cd codes/config/DCLS
python3 test.py -opt=options/setting1/test_setting1_x4.yml

Results

Comparison on Isotropic Gaussian kernels (Gaussian8)

ISO kernel

Comparison on Anisotropic Gaussian kernels (DIV2KRK)

ANISO kernel

Citations

If our code helps your research or work, please consider citing our paper. The following is a BibTeX reference.

@article{luo2022deep,
  title={Deep Constrained Least Squares for Blind Image Super-Resolution},
  author={Luo, Ziwei and Huang, Haibin and Yu, Lei and Li, Youwei and Fan, Haoqiang and Liu, Shuaicheng},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Contact

email: [[email protected]]

Acknowledgement

This project is based on [DAN], [MMSR] and [BasicSR].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023