code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Overview

Not All Unlabeled Data are Equal:
Learning to Weight Data in Semi-supervised Learning

Overview

This code is for paper: Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning. Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing. NeurIPS'20. (*equal contribtion)

Setup

Important: ML_DATA is a shell environment variable that should point to the location where the datasets are installed. See the Install datasets section for more details.
Environement*: this code is tested using python-3.7, anaconda3-5.0.1, cuda-10.0, cudnn-v7.6, tensorflow-1.15

Install dependencies

conda create -n semi-sup python=3.7
conda activate semi-sup
pip install -r requirements.txt

make sure tf.test.is_gpu_available() == True after installation so that GPUs will be used.

Install datasets

export ML_DATA="path to where you want the datasets saved"
export PYTHONPATH=$PYTHONPATH:"path to this repo"

# Download datasets
CUDA_VISIBLE_DEVICES= ./scripts/create_datasets.py
cp $ML_DATA/svhn-test.tfrecord $ML_DATA/svhn_noextra-test.tfrecord

# Create unlabeled datasets
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/cifar10 $ML_DATA/cifar10-train.tfrecord
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/svhn $ML_DATA/svhn-train.tfrecord $ML_DATA/svhn-extra.tfrecord
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/svhn_noextra $ML_DATA/svhn-train.tfrecord

# Create semi-supervised subsets
for seed in 0 1 2 3 4 5; do
    for size in 250 1000 4000; do
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/cifar10 $ML_DATA/cifar10-train.tfrecord
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/svhn $ML_DATA/svhn-train.tfrecord $ML_DATA/svhn-extra.tfrecord
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/svhn_noextra $ML_DATA/svhn-train.tfrecord
    done
done

Running

Setup

All commands must be ran from the project root. The following environment variables must be defined:

export ML_DATA="path to where you want the datasets saved"
export PYTHONPATH=$PYTHONPATH:"path to this repo"

Example

For example, train a model with 32 filters on cifar10 shuffled with seed=1, 250 labeled samples and 1000 validation sample:

# single-gpu
CUDA_VISIBLE_DEVICES=0 python main.py --filters=32 [email protected] --train_dir ./experiments

# multi-gpu: just pass more GPUs and the model automatically scales to them, here we assign GPUs 0-1 to the program:
CUDA_VISIBLE_DEVICES=0,1 python main.py --filters=32 [email protected] --train_dir ./experiments

Naming rule: ${dataset}.${seed}@${size}-${valid}
Available labelled sizes are 250, 1000, 4000.
For validation, available sizes are 1000, 5000.
Possible shuffling seeds are 1, 2, 3, 4, 5 and 0 for no shuffling (0 is not used in practiced since data requires to be shuffled for gradient descent to work properly).

Image classification

The hyper-parameters used in the paper:

# 2GPU setting is recommended
for seed in 1 2 3 4 5; do
    for size in 250 1000 4000; do
    CUDA_VISIBLE_DEVICES=0,1 python main.py --filters=32 \
        --dataset=cifar10.${seed}@${size}-1000 \
        --train_dir ./experiments --alpha 0.01 --inner_steps 512
    done
done

Flags

python main.py --help
# The following option might be too slow to be really practical.
# python main.py --helpfull
# So instead I use this hack to find the flags:
fgrep -R flags.DEFINE libml main.py

Monitoring training progress

You can point tensorboard to the training folder (by default it is --train_dir=./experiments) to monitor the training process:

tensorboard.sh --port 6007 --logdir ./experiments

Checkpoint accuracy

We compute the median accuracy of the last 20 checkpoints in the paper, this is done through this code:

# Following the previous example in which we trained [email protected], extracting accuracy:
./scripts/extract_accuracy.py ./experiments/[email protected]/CTAugment_depth2_th0.80_decay0.990/FixMatch_alpha0.01_archresnet_batch64_confidence0.95_filters32_inf_warm0_inner_steps100_lr0.03_nclass10_repeat4_scales3_size_unlabeled49000_uratio7_wd0.0005_wu1.0
# The command above will create a stats/accuracy.json file in the model folder.
# The format is JSON so you can either see its content as a text file or process it to your liking.

Use you own data

  1. You first need to creat *.tfrecord for the labeled and unlabled data; please check scripts/create_datasets.py and scripts/create_unlabeled.py for examples.
  2. Then you need to creat the splits for semi-supervied learning; see scripts/create_split.py.
  3. modify libml/data.py to support the new dataset. Specifically, check this function and this class.
  4. tune hyper-parameters (e.g., learning rate, num_epochs, etc.) to achieve the best results.

Note: our algorithm involves approximation of inverse-Hessian and computation of per-example gradients. Therefore, running on a dataset with large number of classes will be computationally heavy in terms of both speed and memory.

License

Please check LICENSE

Citing this work

If you use this code for your research, please cite our paper.

@inproceedings{ren-ssl2020,
  title = {Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning},
  author = {Zhongzheng Ren$^\ast$ and Raymond A. Yeh$^\ast$ and Alexander G. Schwing},
  booktitle = {Neural Information Processing Systems (NeurIPS)},
  year = {2020},
  note = {$^\ast$ equal contribution},
}

Acknowledgement

The code is built based on: FixMatch (commit: 08d9b83)

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel.

Contact

Github issues and PR are preferred. Feel free to contact Jason Ren (zr5 AT illinois.edu) for any questions!

Owner
Jason Ren
[email protected]. Brain and eye.
Jason Ren
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
3 Apr 20, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022