code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Overview

Not All Unlabeled Data are Equal:
Learning to Weight Data in Semi-supervised Learning

Overview

This code is for paper: Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning. Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing. NeurIPS'20. (*equal contribtion)

Setup

Important: ML_DATA is a shell environment variable that should point to the location where the datasets are installed. See the Install datasets section for more details.
Environement*: this code is tested using python-3.7, anaconda3-5.0.1, cuda-10.0, cudnn-v7.6, tensorflow-1.15

Install dependencies

conda create -n semi-sup python=3.7
conda activate semi-sup
pip install -r requirements.txt

make sure tf.test.is_gpu_available() == True after installation so that GPUs will be used.

Install datasets

export ML_DATA="path to where you want the datasets saved"
export PYTHONPATH=$PYTHONPATH:"path to this repo"

# Download datasets
CUDA_VISIBLE_DEVICES= ./scripts/create_datasets.py
cp $ML_DATA/svhn-test.tfrecord $ML_DATA/svhn_noextra-test.tfrecord

# Create unlabeled datasets
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/cifar10 $ML_DATA/cifar10-train.tfrecord
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/svhn $ML_DATA/svhn-train.tfrecord $ML_DATA/svhn-extra.tfrecord
CUDA_VISIBLE_DEVICES= scripts/create_unlabeled.py $ML_DATA/SSL2/svhn_noextra $ML_DATA/svhn-train.tfrecord

# Create semi-supervised subsets
for seed in 0 1 2 3 4 5; do
    for size in 250 1000 4000; do
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/cifar10 $ML_DATA/cifar10-train.tfrecord
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/svhn $ML_DATA/svhn-train.tfrecord $ML_DATA/svhn-extra.tfrecord
        CUDA_VISIBLE_DEVICES= scripts/create_split.py --seed=$seed --size=$size $ML_DATA/SSL2/svhn_noextra $ML_DATA/svhn-train.tfrecord
    done
done

Running

Setup

All commands must be ran from the project root. The following environment variables must be defined:

export ML_DATA="path to where you want the datasets saved"
export PYTHONPATH=$PYTHONPATH:"path to this repo"

Example

For example, train a model with 32 filters on cifar10 shuffled with seed=1, 250 labeled samples and 1000 validation sample:

# single-gpu
CUDA_VISIBLE_DEVICES=0 python main.py --filters=32 [email protected] --train_dir ./experiments

# multi-gpu: just pass more GPUs and the model automatically scales to them, here we assign GPUs 0-1 to the program:
CUDA_VISIBLE_DEVICES=0,1 python main.py --filters=32 [email protected] --train_dir ./experiments

Naming rule: ${dataset}.${seed}@${size}-${valid}
Available labelled sizes are 250, 1000, 4000.
For validation, available sizes are 1000, 5000.
Possible shuffling seeds are 1, 2, 3, 4, 5 and 0 for no shuffling (0 is not used in practiced since data requires to be shuffled for gradient descent to work properly).

Image classification

The hyper-parameters used in the paper:

# 2GPU setting is recommended
for seed in 1 2 3 4 5; do
    for size in 250 1000 4000; do
    CUDA_VISIBLE_DEVICES=0,1 python main.py --filters=32 \
        --dataset=cifar10.${seed}@${size}-1000 \
        --train_dir ./experiments --alpha 0.01 --inner_steps 512
    done
done

Flags

python main.py --help
# The following option might be too slow to be really practical.
# python main.py --helpfull
# So instead I use this hack to find the flags:
fgrep -R flags.DEFINE libml main.py

Monitoring training progress

You can point tensorboard to the training folder (by default it is --train_dir=./experiments) to monitor the training process:

tensorboard.sh --port 6007 --logdir ./experiments

Checkpoint accuracy

We compute the median accuracy of the last 20 checkpoints in the paper, this is done through this code:

# Following the previous example in which we trained [email protected], extracting accuracy:
./scripts/extract_accuracy.py ./experiments/[email protected]/CTAugment_depth2_th0.80_decay0.990/FixMatch_alpha0.01_archresnet_batch64_confidence0.95_filters32_inf_warm0_inner_steps100_lr0.03_nclass10_repeat4_scales3_size_unlabeled49000_uratio7_wd0.0005_wu1.0
# The command above will create a stats/accuracy.json file in the model folder.
# The format is JSON so you can either see its content as a text file or process it to your liking.

Use you own data

  1. You first need to creat *.tfrecord for the labeled and unlabled data; please check scripts/create_datasets.py and scripts/create_unlabeled.py for examples.
  2. Then you need to creat the splits for semi-supervied learning; see scripts/create_split.py.
  3. modify libml/data.py to support the new dataset. Specifically, check this function and this class.
  4. tune hyper-parameters (e.g., learning rate, num_epochs, etc.) to achieve the best results.

Note: our algorithm involves approximation of inverse-Hessian and computation of per-example gradients. Therefore, running on a dataset with large number of classes will be computationally heavy in terms of both speed and memory.

License

Please check LICENSE

Citing this work

If you use this code for your research, please cite our paper.

@inproceedings{ren-ssl2020,
  title = {Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning},
  author = {Zhongzheng Ren$^\ast$ and Raymond A. Yeh$^\ast$ and Alexander G. Schwing},
  booktitle = {Neural Information Processing Systems (NeurIPS)},
  year = {2020},
  note = {$^\ast$ equal contribution},
}

Acknowledgement

The code is built based on: FixMatch (commit: 08d9b83)

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel.

Contact

Github issues and PR are preferred. Feel free to contact Jason Ren (zr5 AT illinois.edu) for any questions!

Owner
Jason Ren
[email protected]. Brain and eye.
Jason Ren
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021