The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Overview

title

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

Requirements

pip install -r requirements.txt

Data

The format of datasets includes three columns, the first column is word, the second column is noisy labels and the third column is gold labels. For datasets without golden labels, you could set the third column the same as the second column. We provide the CoNLL 2003 English with recall 0.5 and precision 0.9 in './data/eng_r0.5p0.9'

Confidence Estimation Strategies

Local Strategy

python confidence_estimation_local.py --dataset eng_r0.5p0.9 --embedding_file ${PATH_TO_EMBEDDING} --embedding_dim ${DIM_OF_EMBEDDING} --neg_noise_rate ${NOISE_RATE_OF_NEGATIVES} --pos_noise_rate ${NOISE_RATE_OF_POSITIVES}

For '--neg_noise_rate' and '--pos_noise_rate', you can set them as -1.0 to use golden noise rate (experiment 12 in Table 1 For En), or you can set them as other values (i.e., --neg_noise_rate 0.09 --pos_noise_rate 0.14 for experiment 10, En)

Global Strategy

python confidence_estimation_global.py --dataset eng_r0.5p0.9 --embedding_file ${PATH_TO_EMBEDDING} --embedding_dim ${DIM_OF_EMBEDDING} --neg_noise_rate ${NOISE_RATE_OF_NEGATIVES} --pos_noise_rate ${NOISE_RATE_OF_POSITIVES}

For 'neg_noise_rate' and 'pos_noise_rate', you can set them as -1.0 to use golden noise rate (experiment 13 in Table 1 for En), or you can set them as other values (i.e., --neg_noise_rate 0.1 --pos_noise_rate 0.13 for experiment 11, En)

Key Implementation

equation (3) is implemented in ./model/linear_partial_crf_inferencer.py, line 79-85.

equation (4) is implemented in ./model/neuralcrf_small_loss_constrain_local.py, line 139.

equation (5) is implemented in ./confidence_estimation_local.py, line 74-87 or ./confidence_estimation_global.py, line 75-85.

equation (6) and (7) are implemented in ./model/neuralcrf_small_loss_constrain_global.py, line 188-194 or ./model/neuralcrf_small_loss_constrain_local.py, line 188-197.

For global strategy, equation (8) is implemented in ./model/neuralcrf_small_loss_constrain_global.py, line 195-214 and ./model/linear_partial_crf_inferencer.py, line 36-48. For local strategy, equation (8) is implemented in ./model/neuralcrf_small_loss_constrain_local.py, line 198-215 and ./model/linear_crf_inferencer.py, line 36-48.

This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022