Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Related tags

Deep LearningNLOS-OT
Overview

NLOS-OT

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Description

In this repository, we release the NLOS-OT code in Pytorch as well as the passive NLOS imaging dataset NLOS-Passive.

  • Problem statement: Passive NLOS imaging

  • NLOS-OT architecture

  • The reconstruction results of NLOS-OT trained by specific dataset without partial occluder

  • The generalization results of NLOS-OT trained by dataset only from STL-10 with unknown partial occluder

Installation

  1. install required packages

  2. clone the repo

Prepare Data

  1. Download dataset

You can download each group in NLOS-Passive through the link below. Please note that a compressed package (.zip or .z01+.zip) represents a group of measured data.

link:https://pan.baidu.com/s/19Q48BWm1aJQhIt6BF9z-uQ

code:j3p2

If the link fails, please feel free to contact me.

  1. Organize the files structure of the dataset

Demo / Evaluate

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

  1. Download pretrained pth

  2. run the test.py

Train

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

Citation

If you find our work and code helpful, please consider cite:

We thank the following great works:

  • DeblurGAN, pix2pix: Our code is based on the framework provided by the two repos.

  • IntroVAE: The encoder and decoder in NLOS-OT are based on IntroVAE.

  • AE-OT, AEOT-GAN: The idea of using OT to complete passive NLOS imaging tasks in NLOS-OT comes from the two works.

If you find them helpful, please cite:

@inproceedings{kupynDeblurGANBlindMotion2018,
	title = {{DeblurGAN}: {Blind} {Motion} {Deblurring} {Using} {Conditional} {Adversarial} {Networks}},
	booktitle = {2018 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	author = {Kupyn, Orest and Budzan, Volodymyr and Mykhailych, Mykola and Mishkin, Dmytro and Matas, Jiri},
	year = {2018},
}

@inproceedings{isolaImagetoimageTranslationConditional2017,
	title = {Image-to-image translation with conditional adversarial networks},
	booktitle = {2017 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	publisher = {IEEE},
	author = {Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A.},
	year = {2017},
	pages = {5967--5976},
}

@inproceedings{huang_introvae_2018,
	title = {{IntroVAE}: {Introspective} {Variational} {Autoencoders} for {Photographic} {Image} {Synthesis}},
	shorttitle = {{IntroVAE}},
	urldate = {2020-07-14},
	booktitle = {Advances in neural information processing systems},
	author = {Huang, Huaibo and Li, Zhihang and He, Ran and Sun, Zhenan and Tan, Tieniu},
	month = oct,
	year = {2018}
}

@article{an_ae-ot-gan_2020,
	title = {{AE}-{OT}-{GAN}: {Training} {Gans} from {Data} {Specific} {Latent} {Distribution}},
	shorttitle = {Ae-{Ot}-{Gan}},
	journal = {arXiv},
	author = {An, Dongsheng and Guo, Yang and Zhang, Min and Qi, Xin and Lei, Na and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020}
}

@inproceedings{an_ae-ot_2020,
	title = {{AE}-{OT}: {A} {NEW} {GENERATIVE} {MODEL} {BASED} {ON} {EX}- {TENDED} {SEMI}-{DISCRETE} {OPTIMAL} {TRANSPORT}},
	language = {en},
	author = {An, Dongsheng and Guo, Yang and Lei, Na and Luo, Zhongxuan and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020},
	pages = {19},
}
Owner
Ruixu Geng(耿瑞旭)
Undergraduate 2015 - 2019 (Expected), Information and Communication Engineering, UESTC
Ruixu Geng(耿瑞旭)
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022