Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Related tags

Deep LearningNLOS-OT
Overview

NLOS-OT

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Description

In this repository, we release the NLOS-OT code in Pytorch as well as the passive NLOS imaging dataset NLOS-Passive.

  • Problem statement: Passive NLOS imaging

  • NLOS-OT architecture

  • The reconstruction results of NLOS-OT trained by specific dataset without partial occluder

  • The generalization results of NLOS-OT trained by dataset only from STL-10 with unknown partial occluder

Installation

  1. install required packages

  2. clone the repo

Prepare Data

  1. Download dataset

You can download each group in NLOS-Passive through the link below. Please note that a compressed package (.zip or .z01+.zip) represents a group of measured data.

link:https://pan.baidu.com/s/19Q48BWm1aJQhIt6BF9z-uQ

code:j3p2

If the link fails, please feel free to contact me.

  1. Organize the files structure of the dataset

Demo / Evaluate

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

  1. Download pretrained pth

  2. run the test.py

Train

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

Citation

If you find our work and code helpful, please consider cite:

We thank the following great works:

  • DeblurGAN, pix2pix: Our code is based on the framework provided by the two repos.

  • IntroVAE: The encoder and decoder in NLOS-OT are based on IntroVAE.

  • AE-OT, AEOT-GAN: The idea of using OT to complete passive NLOS imaging tasks in NLOS-OT comes from the two works.

If you find them helpful, please cite:

@inproceedings{kupynDeblurGANBlindMotion2018,
	title = {{DeblurGAN}: {Blind} {Motion} {Deblurring} {Using} {Conditional} {Adversarial} {Networks}},
	booktitle = {2018 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	author = {Kupyn, Orest and Budzan, Volodymyr and Mykhailych, Mykola and Mishkin, Dmytro and Matas, Jiri},
	year = {2018},
}

@inproceedings{isolaImagetoimageTranslationConditional2017,
	title = {Image-to-image translation with conditional adversarial networks},
	booktitle = {2017 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	publisher = {IEEE},
	author = {Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A.},
	year = {2017},
	pages = {5967--5976},
}

@inproceedings{huang_introvae_2018,
	title = {{IntroVAE}: {Introspective} {Variational} {Autoencoders} for {Photographic} {Image} {Synthesis}},
	shorttitle = {{IntroVAE}},
	urldate = {2020-07-14},
	booktitle = {Advances in neural information processing systems},
	author = {Huang, Huaibo and Li, Zhihang and He, Ran and Sun, Zhenan and Tan, Tieniu},
	month = oct,
	year = {2018}
}

@article{an_ae-ot-gan_2020,
	title = {{AE}-{OT}-{GAN}: {Training} {Gans} from {Data} {Specific} {Latent} {Distribution}},
	shorttitle = {Ae-{Ot}-{Gan}},
	journal = {arXiv},
	author = {An, Dongsheng and Guo, Yang and Zhang, Min and Qi, Xin and Lei, Na and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020}
}

@inproceedings{an_ae-ot_2020,
	title = {{AE}-{OT}: {A} {NEW} {GENERATIVE} {MODEL} {BASED} {ON} {EX}- {TENDED} {SEMI}-{DISCRETE} {OPTIMAL} {TRANSPORT}},
	language = {en},
	author = {An, Dongsheng and Guo, Yang and Lei, Na and Luo, Zhongxuan and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020},
	pages = {19},
}
Owner
Ruixu Geng(耿瑞旭)
Undergraduate 2015 - 2019 (Expected), Information and Communication Engineering, UESTC
Ruixu Geng(耿瑞旭)
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022