Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Related tags

Deep LearningNLOS-OT
Overview

NLOS-OT

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

Description

In this repository, we release the NLOS-OT code in Pytorch as well as the passive NLOS imaging dataset NLOS-Passive.

  • Problem statement: Passive NLOS imaging

  • NLOS-OT architecture

  • The reconstruction results of NLOS-OT trained by specific dataset without partial occluder

  • The generalization results of NLOS-OT trained by dataset only from STL-10 with unknown partial occluder

Installation

  1. install required packages

  2. clone the repo

Prepare Data

  1. Download dataset

You can download each group in NLOS-Passive through the link below. Please note that a compressed package (.zip or .z01+.zip) represents a group of measured data.

link:https://pan.baidu.com/s/19Q48BWm1aJQhIt6BF9z-uQ

code:j3p2

If the link fails, please feel free to contact me.

  1. Organize the files structure of the dataset

Demo / Evaluate

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

  1. Download pretrained pth

  2. run the test.py

Train

Before that, you should have installed the required packages and organized the data set according to the appropriate file structure.

Citation

If you find our work and code helpful, please consider cite:

We thank the following great works:

  • DeblurGAN, pix2pix: Our code is based on the framework provided by the two repos.

  • IntroVAE: The encoder and decoder in NLOS-OT are based on IntroVAE.

  • AE-OT, AEOT-GAN: The idea of using OT to complete passive NLOS imaging tasks in NLOS-OT comes from the two works.

If you find them helpful, please cite:

@inproceedings{kupynDeblurGANBlindMotion2018,
	title = {{DeblurGAN}: {Blind} {Motion} {Deblurring} {Using} {Conditional} {Adversarial} {Networks}},
	booktitle = {2018 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	author = {Kupyn, Orest and Budzan, Volodymyr and Mykhailych, Mykola and Mishkin, Dmytro and Matas, Jiri},
	year = {2018},
}

@inproceedings{isolaImagetoimageTranslationConditional2017,
	title = {Image-to-image translation with conditional adversarial networks},
	booktitle = {2017 {IEEE} {Conference} on {Computer} {Vision} and {Pattern} {Recognition} ({CVPR})},
	publisher = {IEEE},
	author = {Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A.},
	year = {2017},
	pages = {5967--5976},
}

@inproceedings{huang_introvae_2018,
	title = {{IntroVAE}: {Introspective} {Variational} {Autoencoders} for {Photographic} {Image} {Synthesis}},
	shorttitle = {{IntroVAE}},
	urldate = {2020-07-14},
	booktitle = {Advances in neural information processing systems},
	author = {Huang, Huaibo and Li, Zhihang and He, Ran and Sun, Zhenan and Tan, Tieniu},
	month = oct,
	year = {2018}
}

@article{an_ae-ot-gan_2020,
	title = {{AE}-{OT}-{GAN}: {Training} {Gans} from {Data} {Specific} {Latent} {Distribution}},
	shorttitle = {Ae-{Ot}-{Gan}},
	journal = {arXiv},
	author = {An, Dongsheng and Guo, Yang and Zhang, Min and Qi, Xin and Lei, Na and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020}
}

@inproceedings{an_ae-ot_2020,
	title = {{AE}-{OT}: {A} {NEW} {GENERATIVE} {MODEL} {BASED} {ON} {EX}- {TENDED} {SEMI}-{DISCRETE} {OPTIMAL} {TRANSPORT}},
	language = {en},
	author = {An, Dongsheng and Guo, Yang and Lei, Na and Luo, Zhongxuan and Yau, Shing-Tung and Gu, Xianfeng},
	year = {2020},
	pages = {19},
}
Owner
Ruixu Geng(耿瑞旭)
Undergraduate 2015 - 2019 (Expected), Information and Communication Engineering, UESTC
Ruixu Geng(耿瑞旭)
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022