SegNet-Basic with Keras

Overview

SegNet-Basic:


What is Segnet?

  • Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation

Segnet = (Encoder + Decoder) + Pixel-Wise Classification layer

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation (Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, Senior Member, IEEE) arXiv:1511.00561v3

What is SegNet-Basic?

  • "In order to analyse SegNet and compare its performance with FCN (decoder variants) we use a smaller version of SegNet, termed SegNet-Basic , which ha 4 encoders and 4 decoders. All the encoders in SegNet-Basic perform max-pooling and subsampling and the corresponding decoders upsample its input using the received max-pooling indices."

Basically it's a mini-segnet to experiment / test the architecure with convnets, such as FCN.


Steps To Run The Model:


  1. Run python model-basic.py to create segNet_basic_model for keras to use.

    • model-basic.py contains the architecure.

Dataset:


  1. In a different directory run this to download the dataset from original Implementation.

    • git clone [email protected]:alexgkendall/SegNet-Tutorial.git
    • copy the /CamVid to here, or change the DataPath in data_loader.py to the above directory
  2. The run python data_loader.py to generate these two files:

    • /data/train_data.npz/ and /data/train_label.npz
    • This will make it easy to process the model over and over, rather than waiting the data to be loaded into memory.

To Do:


[x] SegNet-Basic
[ ] SegNet
[x] Test Accuracy
[ ] Requirements

Segnet-Basic Road Scene Results:


  • Train / Test:
	Train on 367 samples, validate on 233 samples
	Epoch 101/102
	366/367 [============================>.] 
	- ETA: 0s - loss: 0.3835 - acc: 0.8737Epoch 00000: val_acc improved from -inf to 0.76367, saving model to weights.best.hdf5
	367/367 [==============================] 
	- 231s - loss: 0.3832 - acc: 0.8738 - val_loss: 0.7655 - val_acc: 0.7637
	Epoch 102/102
	366/367 [============================>.] 
	- ETA: 0s - loss: 0.3589 - acc: 0.8809Epoch 00001: val_acc did not improve
	367/367 [==============================] 
	- 231s - loss: 0.3586 - acc: 0.8810 - val_loss: 2.4447 - val_acc: 0.4478
  • Evaluation:

    acc: 85.47%

    img1

    img2

Owner
Yad Konrad
indie researcher in areas of Machine Learning, Linguistics & Program Synthesis.
Yad Konrad
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022