Unseen Object Amodal Instance Segmentation (UOAIS)
Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee
This repository contains source codes for the paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling."
[Paper] [Project Website] [Video]
Updates & TODO Lists
- (2021.09.26) UOAIS-Net has been released
- Add train and evaluation code
- Release synthetic dataset (UOAIS-Sim) and amodal annotation (OSD-Amodal)
- Add ROS inference node
Getting Started
Environment Setup
Tested on Titan RTX with python 3.7, pytorch 1.8.0, torchvision 0.9.0, CUDA 10.2.
- Download
git clone https://github.com/gist-ailab/uoais.git
cd uoais
mkdir output
Download the checkpoint at GDrive and move the downloaded folders to the output
folder
- Set up a python environment
conda create -n uoais python=3.7
conda activate uoais
pip install torch torchvision
pip install shapely torchfile opencv-python pyfastnoisesimd rapidfuzz
- Install detectron2
- Build and install custom AdelaiDet
python setup.py build develop
Run with Sample Data
UOAIS-Net (RGB-D)
python tools/run_sample_data.py
License
This repository is released under the MIT license.
Citation
If you use our work in a research project, please cite our work:
@misc{back2021unseen,
title={Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling},
author={Seunghyeok Back and Joosoon Lee and Taewon Kim and Sangjun Noh and Raeyoung Kang and Seongho Bak and Kyoobin Lee},
year={2021},
eprint={2109.11103},
archivePrefix={arXiv},
primaryClass={cs.RO}
}