MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

Overview

MSG-Transformer

Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens,
by Jiemin Fang, Lingxi Xie, Xinggang Wang, Xiaopeng Zhang, Wenyu Liu, Qi Tian.

We propose a novel Transformer architecture, named MSG-Transformer, which enables efficient and flexible information exchange by introducing MSG tokens to sever as the information hub.


Transformers have offered a new methodology of designing neural networks for visual recognition. Compared to convolutional networks, Transformers enjoy the ability of referring to global features at each stage, yet the attention module brings higher computational overhead that obstructs the application of Transformers to process high-resolution visual data. This paper aims to alleviate the conflict between efficiency and flexibility, for which we propose a specialized token for each region that serves as a messenger (MSG). Hence, by manipulating these MSG tokens, one can flexibly exchange visual information across regions and the computational complexity is reduced. We then integrate the MSG token into a multi-scale architecture named MSG-Transformer. In standard image classification and object detection, MSG-Transformer achieves competitive performance and the inference on both GPU and CPU is accelerated. block arch

Updates

  • 2021.6.2 Code for ImageNet classification is released. Pre-trained models will be available soon.

Requirements

  • PyTorch==1.7
  • timm==0.3.2
  • Apex
  • opencv-python>=3.4.1.15
  • yacs==0.1.8

Data Preparation

Please organize your ImageNet dataset as followins.

path/to/ImageNet
|-train
| |-cls1
| | |-img1
| | |-...
| |-cls2
| | |-img2
| | |-...
| |-...
|-val
  |-cls1
  | |-img1
  | |-...
  |-cls2
  | |-img2
  | |-...
  |-...

Training

Train MSG-Transformers on ImageNet-1k with the following script.
For MSG-Transformer-T, run

python -m torch.distributed.launch --nproc_per_node 8 main.py \
    --cfg configs/msg_tiny_p4_win7_224.yaml --data-path <dataset-path> --batch-size 128

For MSG-Transformer-S, run

python -m torch.distributed.launch --nproc_per_node 8 main.py \
    --cfg configs/msg_small_p4_win7_224.yaml --data-path <dataset-path> --batch-size 128

For MSG-Transformer-B, we recommend running the following script on two nodes, where each node is with 8 GPUs.

python -m torch.distributed.launch --nproc_per_node 8 \
    --nnodes=2 --node_rank=<node-rank> --master_addr=<ip-address> --master_port=<port> \
    main.py --cfg configs/msg_base_p4_win7_224.yaml --data-path <dataset-path> --batch-size 64

Evaluation

Run the following script to evaluate the pre-trained model.

python -m torch.distributed.launch --nproc_per_node <GPU-number> main.py \
    --cfg <model-config> --data-path <dataset-path> --batch-size <batch-size> \
    --resume <checkpoint> --eval

Main Results

ImageNet-1K

Model Input size Params FLOPs GPU throughput (images/s) CPU Latency Top-1 ACC (%)
MSG-Trans-T 224 28M 4.6G 696.7 150ms 80.9
MSG-Trans-S 224 50M 8.9G 401.0 262ms 83.0
MSG-Trans-B 224 88M 15.8G 262.6 437ms 83.5

MS-COCO

Method box mAP mask mAP Params FLOPs FPS
MSG-Trans-T 50.3 43.6 86M 748G 9.4
MSG-Trans-S 51.8 44.8 107M 842G 7.5
MSG-Trans-B 51.9 45.0 145M 990G 6.2

Acknowledgements

This repository is based on Swin-Transformer and timm. Thanks for their contributions to the community.

Citation

If you find this repository/work helpful in your research, welcome to cite the paper.

@article{fang2021msgtransformer,
  title={MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens},
  author={Jiemin Fang and Lingxi Xie and Xinggang Wang and Xiaopeng Zhang and Wenyu Liu and Qi Tian},
  journal={arXiv:2105.15168},
  year={2021}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
571 Dec 25, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022