A different spin on dataclasses.

Overview

dataklasses

Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it:

from dataklasses import dataklass

@dataklass
class Coordinates:
    x: int
    y: int

The resulting class works in a well civilised way, providing the usual __init__(), __repr__(), and __eq__() methods that you'd normally have to type out by hand:

>>> a = Coordinates(2, 3)
>>> a
Coordinates(2, 3)
>>> a.x
2
>>> a.y
3
>>> b = Coordinates(2, 3)
>>> a == b
True
>>>

It's easy! Almost too easy.

Wait, doesn't this already exist?

No, it doesn't. Yes, certain naysayers will be quick to point out the existence of @dataclass from the standard library. Ok, sure, THAT exists. However, it's slow and complicated. Dataklasses are neither of those things. The entire dataklasses module is less than 100 lines. The resulting classes import 15-20 times faster than dataclasses. See the perf.py file for a benchmark.

Theory of Operation

While out walking with his puppy, Dave had a certain insight about the nature of Python byte-code. Coming back to the house, he had to try it out:

>>> def __init1__(self, x, y):
...     self.x = x
...     self.y = y
...
>>> def __init2__(self, foo, bar):
...     self.foo = foo
...     self.bar = bar
...
>>> __init1__.__code__.co_code == __init2__.__code__.co_code
True
>>>

How intriguing! The underlying byte-code is exactly the same even though the functions are using different argument and attribute names. Aha! Now, we're onto something interesting.

The dataclasses module in the standard library works by collecting type hints, generating code strings, and executing them using the exec() function. This happens for every single class definition where it's used. If it sounds slow, that's because it is. In fact, it defeats any benefit of module caching in Python's import system.

Dataklasses are different. They start out in the same manner--code is first generated by collecting type hints and using exec(). However, the underlying byte-code is cached and reused in subsequent class definitions whenever possible.

A Short Story

Once upon a time, there was this programming language that I'll refer to as "Lava." Anyways, anytime you started a program written in Lava, you could just tell by the awkward silence and inactivity of your machine before the fans kicked in. "Ah shit, this is written in Lava" you'd exclaim.

Questions and Answers

Q: What methods does dataklass generate?

A: By default __init__(), __repr__(), and __eq__() methods are generated. __match_args__ is also defined to assist with pattern matching.

Q: Does dataklass enforce the specified types?

A: No. The types are merely clues about what the value might be and the Python language does not provide any enforcement on its own.

Q: Are there any additional features?

A: No. You can either have features or you can have performance. Pick one.

Q: Does dataklass use any advanced magic such as metaclasses?

A: No.

Q: How do I install dataklasses?

A: There is no setup.py file, installer, or an official release. You install it by copying the code into your own project. dataklasses.py is small. You are encouraged to modify it to your own purposes.

Q: But what if new features get added?

A: What new features? The best new features are no new features.

Q: Who maintains dataklasses?

A: If you're using it, you do. You maintain dataklasses.

Q: Who wrote this?

A: dataklasses is the work of David Beazley. http://www.dabeaz.com.

Owner
David Beazley
Author of the Python Essential Reference (Addison-Wesley), Python Cookbook (O'Reilly), and former computer science professor. Come take a class!
David Beazley
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Bytedance Inc. 2.5k Jan 06, 2023
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022