Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

Overview

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation:


Work In Progress, Results can't be replicated yet with the models here

  • UPDATE: April 28th: Skip_Connection added thanks to the reviewers, check model model-tiramasu-67-func-api.py

feel free to open issues for suggestions:)

  • Keras2 + TF used for the recent updates, which might cause with some confilict from previous version I had in here

What is The One Hundred Layers Tiramisu?

  • A state of art (as in Jan 2017) Semantic Pixel-wise Image Segmentation model that consists of a fully deep convolutional blocks with downsampling, skip-layer then to Upsampling architecture.
  • An extension of DenseNets to deal with the problem of semantic segmentation.

Fully Convolutional DensNet = (Dense Blocks + Transition Down Blocks) + (Bottleneck Blocks) + (Dense Blocks + Transition Up Blocks) + Pixel-Wise Classification layer

model

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio) arXiv:1611.09326 cs.CV

Requirements:


  • Keras==2.0.2
  • tensorflow-gpu==1.0.1
  • or just go ahead and do: pip install -r requirements.txt

Model Strucure:


  • DenseBlock: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout

  • TransitionDown: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout + MaxPooling2D

  • TransitionUp: Deconvolution2D (Convolutions Transposed)

model-blocks


Model Params:


  • RMSprop is used with Learnining Rete of 0.001 and weight decay 0.995
    • However, using those got me nowhere, I switched to SGD and started tweaking the LR + Decay myself.
  • There are no details given about BatchNorm params, again I have gone with what the Original DenseNet paper had suggested.
  • Things to keep in mind perhaps:
    • the weight inti: he_uniform (maybe change it around?)
    • the regualzrazation too agressive?

Repo (explanation):


  • Download the CamVid Dataset as explained below:
    • Use the data_loader.py to crop images to 224, 224 as in the paper implementation.
  • run model-tiramasu-67-func-api.py or python model-tirmasu-56.py for now to generate each models file.
  • run python train-tirmasu.py to start training:
    • Saves best checkpoints for the model and data_loader included for the CamVidDataset
  • helper.py contains two methods normalized and one_hot_it, currently for the CamVid Task

Dataset:


  1. In a different directory run this to download the dataset from original Implementation.

    • git clone [email protected]:alexgkendall/SegNet-Tutorial.git
    • copy the /CamVid to here, or change the DataPath in data_loader.py to the above directory
  2. The run python data_loader.py to generate these two files:

    • /data/train_data.npz/ and /data/train_label.npz
    • This will make it easy to process the model over and over, rather than waiting the data to be loaded into memory.

  • Experiments:
Models Acc Loss Notes
FC-DenseNet 67 model-results model-results 150 Epochs, RMSPROP

To Do:


[x] FC-DenseNet 103
[x] FC-DenseNet 56
[x] FC-DenseNet 67
[ ] Replicate Test Accuracy CamVid Task
[ ] Replicate Test Accuracy GaTech Dataset Task
[ ] Requirements
  • Original Results Table:

    model-results

Owner
Yad Konrad
indie researcher in areas of Machine Learning, Linguistics & Program Synthesis.
Yad Konrad
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022