Deep Learning (with PyTorch)

Overview

Deep Learning (with PyTorch) Binder

This notebook repository now has a companion website, where all the course material can be found in video and textual format.

🇬🇧   🇨🇳   🇰🇷   🇪🇸   🇮🇹   🇹🇷   🇯🇵   🇸🇦   🇫🇷   🇮🇷   🇷🇺   🇻🇳   🇷🇸   🇵🇹   🇭🇺

Getting started

To be able to follow the exercises, you are going to need a laptop with Miniconda (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal.

Download and install Miniconda

Please go to the Anaconda website. Download and install the latest Miniconda version for Python 3.7 for your operating system.

wget <http:// link to miniconda>
sh <miniconda*.sh>

Check-out the git repository with the exercise

Once Miniconda is ready, checkout the course repository and proceed with setting up the environment:

git clone https://github.com/Atcold/pytorch-Deep-Learning

Create isolated Miniconda environment

Change directory (cd) into the course folder, then type:

# cd pytorch-Deep-Learning
conda env create -f environment.yml
source activate pDL

Start Jupyter Notebook or JupyterLab

Start from terminal as usual:

jupyter lab

Or, for the classic interface:

jupyter notebook

Notebooks visualisation

Jupyter Notebooks are used throughout these lectures for interactive data exploration and visualisation.

We use dark styles for both GitHub and Jupyter Notebook. You should try to do the same, or they will look ugly. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface. To see the content appropriately in the classic interface install the following:

Comments
  • Chapter 5-2 docs

    Chapter 5-2 docs

    Optimization techniques II

    We discuss adaptive methods for SGD such as RMSprop and ADAM. We also talk about normalization layers and their effects on the neural network training process. Finally, we discuss a real-world example of neural nets being used in industry to make MRI scans faster and more efficient.

    Please let me know if any changes need to be made before merging.

    opened by guidopetri 16
  • Updates to current packages

    Updates to current packages

    This:

    • Moves PyTorch from 0.4 to 1.1 (one tiny code change)
    • Moves Python from 3.6 to 3.7 (no changes to code, just env)
    • Moves 1-2 requirements out of notebooks and into environment (potential nasty scipy pip install from librosa avoided!)
    • Uses conda kernels so the correct environment kernel is available (all notebooks rerun to pick up proper kernel)
    • Adds JuptyerLab (not required, but nice) - the interactive backend in the final notebook is still best in the classic interface. Try out built-in dark mode!

    All notebooks seem to run (except noted minor issue with JupyterLab)

    opened by henryiii 16
  • [FR & EN] YouTube subtitles

    [FR & EN] YouTube subtitles

    Hi Alf :wave:,

    As indicated in my last email, I can't afford to wait for Yann's return without a big delay on my side. So here are the subtitle files:

    • For English, it is the addition of the unicode. In practice:
    1. The list of files not modified during this review of the unicode: practinum1 (didn't need unicode), practinum4 (the file contains blocks of 3 instead of 2 for the others), for lecture 12 (the only file I didn't translate into French)

    2. The list of finished files (full English review + unicode) : lecture 6 & 9

    3. The list of about clean files (partial English review + unicode) : lecture 1-3,10,11 + practinum 1-3, 7-8, 10

    4. The list of not clean files (no English review + unicode): lecture 5-9,12-15 + practinum 5-6,9,11-15

    • For French, these are all the subtitles (except for lecture 12 where I have huge problems understanding Mike Lewis's accent and so I preferred not to put anything than to translate badly).

    I also added a disclamer for the V2 of the French translation of the website which should arrive this month. It should be my next and last PR closing the French translation work :boom:

    Loïck

    opened by lbourdois 13
  • Broken image links in 3.3. Properties of natural signals

    Broken image links in 3.3. Properties of natural signals

    The following image links are broken:

    • [x] Figure 2(a)
    • [x] Figure 2(b)
    • [x] Figure 3(a)
    • [x] Figure 3(b)

    See https://atcold.github.io/pytorch-Deep-Learning/en/week03/03-3/

    I think the images were originally obtained from this presentation: 02 - CNN.pdf

    See pages 10-11


    Also, small suggestions:

    • [x] Change Figure 4 to include R^7 and R^2 as in Slide 20 . This would better match the text for Figure 4.

    • [x] Include Figure (4b maybe?) with that on Slide 21 to show what Padding is doing

    opened by feedthebeat90 11
  • Portuguese translation

    Portuguese translation

    Hi @Atcold ! I would like to know how and where should I commit markdown files in Portuguese? I recall that you have commented something with @ebetica .

    opened by ricardobarroslourenco 11
  • [ZH] 13-3 Inline latex broken

    [ZH] 13-3 Inline latex broken

    Hi @JonathanSum ! Just for your info, There seems to be some inline latex broken on lecture 13-3:

    Screen Shot 2020-09-23 at 22 41 44

    The rest of the lectures I've checked seem to be fine.

    opened by xcastilla 9
  • Reorganize the website structure

    Reorganize the website structure

    This PR reorganizes the website structure, so we now have:

    en/
      index.md
      about.dm
      week01/
      week02/
      ...
    zh/
      index.md
      about.md
      week01/
      week02/
      ...
    ...
    

    Hopefully it's less messy and easier to work with.

    After this is merged, I will pull the images out into a global directory as well.

    Also fixes some broken links in zh/index.md

    opened by ebetica 9
  • Problem visualizing spanish translation on github.io

    Problem visualizing spanish translation on github.io

    I found an error visualizing on the github.io page the file /docs/es/week02/02-1.md.

    The english version of the file appears before some parts and the layout of the spanish parts after the english parts gets a bit messed up.

    grafik

    grafik

    opened by mt0rm0 8
  • [EN] Fix timers

    [EN] Fix timers

    A PR that fixes the timers of the sbv files that I couldn't correct in PR #660 to avoid conflicts.

    I also took the opportunity to correct the few errors I caught when translating the lecture10.

    I also noticed that the sbv files of the practinums of weeks 14 and 15 were missing.

    opened by lbourdois 8
  • [ZH] translation of 06-2 and 06.md

    [ZH] translation of 06-2 and 06.md

    I have translated the top 50% of the RNN(06-02) in Chinese.

    I passed the course on deep learning.ai and I also wrote a few notebooks to help students in the coursera Tensorflow time series seq2seq notebook.

    opened by JonathanSum 8
  • Vanishing gradient notebook

    Vanishing gradient notebook

    Poornima and I have compared an LSTM and RNN and visualized the gradients with respect to the input. We see that the gradients for the RNN are much smaller compared to the LSTM.

    We are able to train MNIST for a large input sequence with an LSTM and failed to do so with an RNN.

    Hope this is useful. If we need to make any chances, please let us know !

    opened by karanchahal 8
  • Software version update for 2023

    Software version update for 2023

    Hi there,

    I hope these tips can help you: Using Docker, with torchtext version 0.9.0 and PyTorch version 1.8.0.

    Please note that PyTorch 1.8 may not have good support for CUDA versions newer than 11. If you are using a newer version of CUDA, you may want to consider using the CPU instead.

    opened by wenxin-bupt 0
  • <Fix> evaluation dataset, printed samples

    evaluation dataset, printed samples

    Bunch of minor "theoretical" changes in the evaluation function:

    1. test_data_gen was used as the data generator in the evaluation, instead of data_generator, thereby evaluating the net on the test set used for training (not an actual issue here given the sequences are randomized and not sampled from existing datasets, but in principle would lead to a data leak in realistic scenarios);
    2. the correct sequences printed were a sampling (with reinsertion) of the first 10 evaluated, instead of 10 sampled from the whole set of correct ones;
    3. the condition for printing the incorrectly classified sequences would declare the absence of misclassifications if verbose==False, independently of their actual presence;
    opened by hypothe 1
  • Added controller trainer and improved truck class

    Added controller trainer and improved truck class

    Added

    • new truck methods for randomizing state within contraints
    • new truck methods for seeing if truck is at dock or offscreen
    • Training script for optimizing controller

    Note

    I currently have not successfully trained the controller to convergence. I have based the training off of this. On the website, they mention that the controller is hard to train. I have tried training it on the website with no success, so it seems like even their lessons are difficult to train. However, the code for training should be very similar to the code on the website. You may also alter the amount of lessons, max time steps, learning rate etc. to see if the model converges. I have been trying for over a week and have not succeeded yet.

    opened by dafaronbi 1
  • fix chinese version of 12-3

    fix chinese version of 12-3

    I found that the Chinese version was basically machine translated, which caused the latex syntax to be broken. Of course, there are a lot of unreasonable translation. This PR is mainly about fixing broken latex. I also did my best to fix some of the translations that were too much bullshit.

    opened by vipcxj 0
  • Russian translation (dictionary)

    Russian translation (dictionary)

    I would question some translations in the dictionary for Russian: I've graduated this year and we haven't really translated everything. For example, it will be more understandable if I say "one-hot" in Russian as it is, rather than "унитарный код". Basically, I've never heard anyone calling it "унитарный код", to be honest...

    So I guess there is a choice between being academically strict or being understood.

    opened by xufana 4
  • Use conda instead of source activate

    Use conda instead of source activate

    I think source activate is a few years old now and isn't supported anymore. https://stackoverflow.com/questions/49600611/python-anaconda-should-i-use-conda-activate-or-source-activate-in-linux

    opened by ebetica 0
Releases(dlsp19)
  • dlsp19(Jan 30, 2020)

    This is the notes for the Spring 2019 Deep Learning course at NYU. This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional net and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition.

    This is the initial draft of the course notes - they are based off of a course developed for the the African Masters of Machine Intelligence (AMMI). You can access that version here

    Source code(tar.gz)
    Source code(zip)
  • aims-fl18(Jan 30, 2020)

    The African Masters of Machine Intelligence (AMMI) is Africa's flagship program in machine intelligence led by The African Institute for Mathematical Sciences (AIMS). These lessons, developed during the course of several years while I've been teaching at Purdue and NYU, are here proposed for the AMMI (AIMS).

    Prior to this course delivered for AMMI (AIMS), an earlier version of this was delivered and video-recorded for the Computational and Data Science for High Energy Physics (CoDaS-HEP) summer school at Princeton University. Please refer to this version release here.

    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Nov 5, 2018)

    Click CoDaS-HEP_2018 to jump to this release.

    These lessons, developed during the course of several years while I've been teaching at Purdue and NYU, are here proposed for the Computational and Data Science for High Energy Physics (CoDaS-HEP) summer school at Princeton University. The whole course has been recorded and the playlist is made available here. Check the slides for drawings of better visual quality.

    Source code(tar.gz)
    Source code(zip)
Owner
Alfredo Canziani
Musician, math lover, cook, dancer, 🏳️‍🌈, and assistant professor of Computer Science at New York University
Alfredo Canziani
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022