Few-shot NLP benchmark for unified, rigorous eval

Related tags

Deep Learningflex
Overview

FLEX

FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables:

  • First-class NLP support
  • Support for meta-training
  • Reproducible fewshot evaluations
  • Extensible benchmark creation (benchmarks defined using HuggingFace Datasets)
  • Advanced sampling functions for creating episodes with class imbalance, etc.

For more context, see our arXiv preprint.

Together with FLEX, we also released a simple yet strong few-shot model called UniFew. For more details, see our preprint.

Leaderboards

These instructions are geared towards users of the first benchmark created with this framework. The benchmark has two leaderboards, for the Pretraining-Only and Meta-Trained protocols described in Section 4.2 of our paper:

  • FLEX (Pretraining-Only): for models that do not use meta-training data related to the test tasks (do not follow the Model Training section below).
  • FLEX-META (Meta-Trained): for models that use only the provided meta-training and meta-validation data (please do see the Model Training section below).

Installation

  • Clone the repository: git clone [email protected]:allenai/flex.git
  • Create a Python 3 environment (3.7 or greater), eg using conda create --name flex python=3.9
  • Activate the environment: conda activate flex
  • Install the package locally with pip install -e .

Data Preparation

Creating the data for the flex challenge for the first time takes about 10 minutes (using a recent Macbook Pro on a broadband connection) and requires 3GB of disk space. You can initiate this process by running

python -c "import fewshot; fewshot.make_challenge('flex');"

You can control the location of the cached data by setting the environment variable HF_DATASETS_CACHE. If you have not set this variable, the location should default to ~/.cache/huggingface/datasets/. See the HuggingFace docs for more details.

Model Evaluation

"Challenges" are datasets of sampled tasks for evaluation. They are defined in fewshot/challenges/__init__.py.

To evaluate a model on challenge flex (our first challenge), you should write a program that produces a predictions.json, for example:

#!/usr/bin/env python3
import random
from typing import Iterable, Dict, Any, Sequence
import fewshot


class YourModel(fewshot.Model):
    def fit_and_predict(
        self,
        support_x: Iterable[Dict[str, Any]],
        support_y: Iterable[str],
        target_x: Iterable[Dict[str, Any]],
        metadata: Dict[str, Any]
    ) -> Sequence[str]:
        """Return random label predictions for a fewshot task."""
        train_x = [d['txt'] for d in support_x]
        train_y = support_y
        test_x = [d['txt'] for d in target_x]
        test_y = [random.choice(metadata['labels']) for _ in test_x]
        # >>> print(test_y)
        # ['some', 'list', 'of', 'label', 'predictions']
        return test_y


if __name__ == '__main__':
    evaluator = fewshot.make_challenge("flex")
    model = YourModel()
    evaluator.save_model_predictions(model=model, save_path='/path/to/predictions.json')

Warning: Calling fewshot.make_challenge("flex") above requires some time to prepare all the necessary data (see "Data preparation" section).

Running the above script produces /path/to/predictions.json with contents formatted as:

{
    "[QUESTION_ID]": {
        "label": "[CLASS_LABEL]",  # Currently an integer converted to a string
        "score": float  # Only used for ranking tasks
    },
    ...
}

Each [QUESTION_ID] is an ID for a test example in a few-shot problem.

[Optional] Parallelizing Evaluation

Two options are available for parallelizing evaluation.

First, one can restrict evaluation to a subset of tasks with indices from [START] to [STOP] (exclusive) via

evaluator.save_model_predictions(model=model, start_task_index=[START], stop_task_index=[STOP])

Notes:

  • You may use stop_task_index=None (or omit it) to avoid specifying an end.
  • You can find the total number of tasks in the challenge with fewshot.get_challenge_spec([CHALLENGE]).num_tasks.
  • To merge partial evaluation outputs into a complete predictions.json file, use fewshot merge partial1.json partial2.json ... predictions.json.

The second option will call your model's .fit_and_predict() method with batches of [BATCH_SIZE] tasks, via

evaluator.save_model_predictions(model=model, batched=True, batch_size=[BATCH_SIZE])

Result Validation and Scoring

To validate the contents of your predictions, run:

fewshot validate --challenge_name flex --predictions /path/to/predictions.json

This validates all the inputs and takes some time. Substitute flex for another challenge to evaluate on a different challenge.

(There is also a score CLI command which should not be used on the final challenge except when reporting final results.)

Model Training

For the meta-training protocol (e.g., the FLEX-META leaderboard), challenges come with a set of related training and validation data. This data is most easily accessible in one of two formats:

  1. Iterable from sampled episodes. fewshot.get_challenge_spec('flex').get_sampler(split='[SPLIT]') returns an iterable that samples datasets and episodes from meta-training or meta-validation datasets, via [SPLIT]='train' or [SPLIT]='val', respectively. The sampler defaults to the fewshot.samplers.Sample2WayMax8ShotCfg sampler configuration (for the fewshot.samplers.sample.Sampler class), but can be reconfigured.

  2. Raw dataset stores. This option is for directly accessing the raw data. fewshot.get_challenge_spec('flex').get_stores(split='[SPLIT']) returns a mapping from dataset names to fewshot.datasets.store.Store instances. Each Store instance has a Store.store attribute containing a raw HuggingFace Dataset instance. The Store instance has a Store.label attribute with the Dataset object key for accessing the target label (e.g., via Store.store[Store.label]) and the FLEX-formatted text available at the flex.txt key (e.g., via Store.store['flex.txt']).

Two examples of these respective approaches are available at:

  1. The UniFew model repository. For more details on Unifew, see also the FLEX Arxiv paper.
  2. The baselines/bao/ directory, for training and evaluating the approach described in the following paper:

Yujia Bao*, Menghua Wu*, Shiyu Chang, and Regina Barzilay. Few-shot Text Classification with Distributional Signatures. In International Conference on Learning Representations 2020

Benchmark Construction and Optimization

To add a new benchmark (challenge) named [NEW_CHALLENGE], you must edit fewshot/challenges/__init__.py or otherwise add it to the registry. The above usage instructions would change to substitute [NEW_CHALLENGE] in place of flex when calling fewshot.get_challenge_spec('[NEW_CHALLENGE]') and fewshot.make_challenge('[NEW_CHALLENGE]').

For an example of how to optimize the sample size of the challenge, see scripts/README-sample-size.md.

Attribution

If you make use of our framework, benchmark, or model, please cite our preprint:

@misc{bragg2021flex,
      title={FLEX: Unifying Evaluation for Few-Shot NLP},
      author={Jonathan Bragg and Arman Cohan and Kyle Lo and Iz Beltagy},
      year={2021},
      eprint={2107.07170},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022