Few-shot NLP benchmark for unified, rigorous eval

Related tags

Deep Learningflex
Overview

FLEX

FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables:

  • First-class NLP support
  • Support for meta-training
  • Reproducible fewshot evaluations
  • Extensible benchmark creation (benchmarks defined using HuggingFace Datasets)
  • Advanced sampling functions for creating episodes with class imbalance, etc.

For more context, see our arXiv preprint.

Together with FLEX, we also released a simple yet strong few-shot model called UniFew. For more details, see our preprint.

Leaderboards

These instructions are geared towards users of the first benchmark created with this framework. The benchmark has two leaderboards, for the Pretraining-Only and Meta-Trained protocols described in Section 4.2 of our paper:

  • FLEX (Pretraining-Only): for models that do not use meta-training data related to the test tasks (do not follow the Model Training section below).
  • FLEX-META (Meta-Trained): for models that use only the provided meta-training and meta-validation data (please do see the Model Training section below).

Installation

  • Clone the repository: git clone [email protected]:allenai/flex.git
  • Create a Python 3 environment (3.7 or greater), eg using conda create --name flex python=3.9
  • Activate the environment: conda activate flex
  • Install the package locally with pip install -e .

Data Preparation

Creating the data for the flex challenge for the first time takes about 10 minutes (using a recent Macbook Pro on a broadband connection) and requires 3GB of disk space. You can initiate this process by running

python -c "import fewshot; fewshot.make_challenge('flex');"

You can control the location of the cached data by setting the environment variable HF_DATASETS_CACHE. If you have not set this variable, the location should default to ~/.cache/huggingface/datasets/. See the HuggingFace docs for more details.

Model Evaluation

"Challenges" are datasets of sampled tasks for evaluation. They are defined in fewshot/challenges/__init__.py.

To evaluate a model on challenge flex (our first challenge), you should write a program that produces a predictions.json, for example:

#!/usr/bin/env python3
import random
from typing import Iterable, Dict, Any, Sequence
import fewshot


class YourModel(fewshot.Model):
    def fit_and_predict(
        self,
        support_x: Iterable[Dict[str, Any]],
        support_y: Iterable[str],
        target_x: Iterable[Dict[str, Any]],
        metadata: Dict[str, Any]
    ) -> Sequence[str]:
        """Return random label predictions for a fewshot task."""
        train_x = [d['txt'] for d in support_x]
        train_y = support_y
        test_x = [d['txt'] for d in target_x]
        test_y = [random.choice(metadata['labels']) for _ in test_x]
        # >>> print(test_y)
        # ['some', 'list', 'of', 'label', 'predictions']
        return test_y


if __name__ == '__main__':
    evaluator = fewshot.make_challenge("flex")
    model = YourModel()
    evaluator.save_model_predictions(model=model, save_path='/path/to/predictions.json')

Warning: Calling fewshot.make_challenge("flex") above requires some time to prepare all the necessary data (see "Data preparation" section).

Running the above script produces /path/to/predictions.json with contents formatted as:

{
    "[QUESTION_ID]": {
        "label": "[CLASS_LABEL]",  # Currently an integer converted to a string
        "score": float  # Only used for ranking tasks
    },
    ...
}

Each [QUESTION_ID] is an ID for a test example in a few-shot problem.

[Optional] Parallelizing Evaluation

Two options are available for parallelizing evaluation.

First, one can restrict evaluation to a subset of tasks with indices from [START] to [STOP] (exclusive) via

evaluator.save_model_predictions(model=model, start_task_index=[START], stop_task_index=[STOP])

Notes:

  • You may use stop_task_index=None (or omit it) to avoid specifying an end.
  • You can find the total number of tasks in the challenge with fewshot.get_challenge_spec([CHALLENGE]).num_tasks.
  • To merge partial evaluation outputs into a complete predictions.json file, use fewshot merge partial1.json partial2.json ... predictions.json.

The second option will call your model's .fit_and_predict() method with batches of [BATCH_SIZE] tasks, via

evaluator.save_model_predictions(model=model, batched=True, batch_size=[BATCH_SIZE])

Result Validation and Scoring

To validate the contents of your predictions, run:

fewshot validate --challenge_name flex --predictions /path/to/predictions.json

This validates all the inputs and takes some time. Substitute flex for another challenge to evaluate on a different challenge.

(There is also a score CLI command which should not be used on the final challenge except when reporting final results.)

Model Training

For the meta-training protocol (e.g., the FLEX-META leaderboard), challenges come with a set of related training and validation data. This data is most easily accessible in one of two formats:

  1. Iterable from sampled episodes. fewshot.get_challenge_spec('flex').get_sampler(split='[SPLIT]') returns an iterable that samples datasets and episodes from meta-training or meta-validation datasets, via [SPLIT]='train' or [SPLIT]='val', respectively. The sampler defaults to the fewshot.samplers.Sample2WayMax8ShotCfg sampler configuration (for the fewshot.samplers.sample.Sampler class), but can be reconfigured.

  2. Raw dataset stores. This option is for directly accessing the raw data. fewshot.get_challenge_spec('flex').get_stores(split='[SPLIT']) returns a mapping from dataset names to fewshot.datasets.store.Store instances. Each Store instance has a Store.store attribute containing a raw HuggingFace Dataset instance. The Store instance has a Store.label attribute with the Dataset object key for accessing the target label (e.g., via Store.store[Store.label]) and the FLEX-formatted text available at the flex.txt key (e.g., via Store.store['flex.txt']).

Two examples of these respective approaches are available at:

  1. The UniFew model repository. For more details on Unifew, see also the FLEX Arxiv paper.
  2. The baselines/bao/ directory, for training and evaluating the approach described in the following paper:

Yujia Bao*, Menghua Wu*, Shiyu Chang, and Regina Barzilay. Few-shot Text Classification with Distributional Signatures. In International Conference on Learning Representations 2020

Benchmark Construction and Optimization

To add a new benchmark (challenge) named [NEW_CHALLENGE], you must edit fewshot/challenges/__init__.py or otherwise add it to the registry. The above usage instructions would change to substitute [NEW_CHALLENGE] in place of flex when calling fewshot.get_challenge_spec('[NEW_CHALLENGE]') and fewshot.make_challenge('[NEW_CHALLENGE]').

For an example of how to optimize the sample size of the challenge, see scripts/README-sample-size.md.

Attribution

If you make use of our framework, benchmark, or model, please cite our preprint:

@misc{bragg2021flex,
      title={FLEX: Unifying Evaluation for Few-Shot NLP},
      author={Jonathan Bragg and Arman Cohan and Kyle Lo and Iz Beltagy},
      year={2021},
      eprint={2107.07170},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022