TipToiDog - Tip Toi Dog With Python

Overview

TipToiDog

Was ist dieses Projekt?

Meine 5-jährige Tochter spielt sehr gerne das Quiz Wer kennt alle Hunde. Dabei interessiert sie sich gar nicht so sehr für die Details auf der Rückseite der Quizkarten, sondern hauptsächlich für die Hundenamen. Da sie aber noch nicht lesen kann, kann sie das Quiz nicht alleine machen. Da kam mir die Idee, den TipToi-Stift von Ravensburger dafür einzusetzen, dass sie das Spiel doch alleine spielen kann. Der Stift sollte also die jeweiligen Hundenamen vorlesen. Ich war zuversichtlich, dass es bestimmt paar clevere Leute gibt, die herausgefunden haben, wie man den Stift auch für eigene Projekt einsetzen kann. Und siehe da: Es gibt das geniale Tool tttool. Hiermit konnte ich das Projekt in ca. einem Tag umsetzen. Desweiteren war noch ein bisschen Python-Coding notwendig.

Wie funktioniert der TipToi-Stift überhaupt?

Dies wird hier hervorragend beschrieben und daher erlaube ich mir die Faulheit, die Funktionsweise nicht näher zu erläutern. Es sei nur so viel gesagt: Der Stift arbeitet optisch und erkennt so genannte OID-Codes. Jeder Hundename muss nun also einem OID-Code zu geordnet werden und dann jedem OID-Code noch eine entsprechende Audio-Datei, die den Hundenamen enthält.

Welche Dateien sind für was?

Wenn ihr direkt damit loslegen wollt, das Quiz um die TipToi-Funktion zu erweitern, so braucht ihr lediglich 2 Dateien:

  • dogs.gme: Diese Datei enthält alle Sounddateien und die notwendigen Information für den TipToi, um das Hundequiz auf diesem zu spielen. Hier könnt ihr genauer nachlesen, wenn ihr das Konzept der gme-Datei genauer verstehen wollt. Diese Datei könnt ihr direkt auf den Stift schieben.
  • dogs_box.pdf: In dieser Datei sind die Steuerfelder und alle Hunde-Namen in OID-Code abgebildet, wobei in jedem Codefeld ein Knochen eingebettet ist. Diese Datei muss ausgedruckt werden und dann jeder Knochen auf das entsprechende Hundekarte geklebt werden. Folgendes Bild zeigt 3 Hundekarten mit aufgeklebtem "OID-Knochen":

Die Steuerzeichen (Stop habe ich nicht verwendet), sind auf der Box aufgeklebt:

Beim Drucken liegt leider der Teufel im Detail, [siehe auch hier](https://github.com/entropia/tip-toi-reveng/wiki/Printing). Ich habe es mit meinem Drucker (Brother HL-L2370DN) mit den folgenden Druckeinstellungen gut hinbekommen:
  • Auflösung: HQ1200
  • Druckeinstellungen: Manuell
    • Helligkeit: 0
    • Konstrast: +34
    • Grafikqualität: Text
    • Rest wie vorgegeben

Auf weiße Etiketten spricht mein TipToi hervorragend an. Allerdings hatte ich den Ehrgeiz die Knochen auf transparente Etiketten zu drucken. Das klappt zwar immer noch, aber nicht mehr ganz so gut. Achtung: Der Druck darf nicht skaliert werden!

Wenn ihr das Projekt modifizieren wollt, also vielleicht die Audiodateien verändern wollt, weil sie euch nicht gefallen, oder ihr eigene Hundekarten ergänzen wollt, braucht ihr folgende Dateien, wobei die Reihenfolge, in der ich sie hier nennen, einen gewissen Ablauf beschreibt.

  • dogs.xls: Diese Excel-Tabelle enthält drei Spalten:
    1. Der Hundename in exakter Schreibweise
    2. Ein Dateiname (ohne Leerzeichen), der den Hundenamen repräsentiert.
    3. Die Sprache (repräsentiert durch ein Kürzel), in der später die Audio-Datei für den Hundenamen generiert werden soll
  • gen_dogs.py: Dieses Skript lädt diese Excel-Datei ein und lässt eine Schleife über alle Hundenamen laufen. Hierbei wird mit Hilfe der Google Text-to-Speech-API eine Audiodatei für jeden Hundenamen erzeugt. Desweiteren wird eine entsprechende yaml-Datei erzeugt. Diese Datei benötigt das tttool dann später um zu wissen für welche Ereignisse/Begriffe (hier: die Hundename) welche Aktionen (hier: Abspielen des Hundenamens) generiert und OID codiert werden sollen.
  • hello_dog.ogg: Diese ist eine akustische Begrüßung, die ich eingespielt habe und die ertönt, wenn das Start-Symbol gewählt wird. Sie kann nach Belieben durch eine andere Datei ersetzt werden. Eure Kinder freuen sich bestimmt, wenn sie eure eigene Stimme zu hören bekommen.
  • gen_gme.bat: Dieses Batch-Skript erzeugt aus der yaml-Datei und den Soundfiles die entsprechende gme-Datei
  • gen_oid.bat: Dieses Batch-Skript erzeugt die OID-Codes in einer Tabelle im PDF-Format. Die Größe habe ich entsprechend so gewählt, dass der Knochen auf der Quizkarte nicht zu viel Platz einnimmt. Außerdem habe ich die Pixel-Größe auf 3 (statt wie standardmäßig 2) eingestellt. Dadurch hat mein Stift die Codes überhaupt erst erkannt.
  • overlay.docx: In diesem Word-Dokument sind Hundeknochen tabellarisch im gleichen Raster angeordnet, wie die OID-Codes in dem PDF, was durch das vorherige Skript erstellt worden ist. Daraus muss eine PDF-Datei erstellt werden (auch hier nicht skalieren!)
  • merge_pdf.py: Dieses Python-Skript verschmelzt die dogs.pdf mit der overlay.pdf zu dogs_box.pdf, die dann gemäß obiger Beschreibung ausgedruckt werden kann.

Viel Spaß beim Verwenden und Modifizieren! Über eine Rückmeldung, wenn ihr es erfolgreich umgesetzt habt, würde ich mich freuen!

This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022