Single/multi view image(s) to voxel reconstruction using a recurrent neural network

Related tags

Deep Learning3D-R2N2
Overview

3D-R2N2: 3D Recurrent Reconstruction Neural Network

This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction, ECCV 2016. Given one or multiple views of an object, the network generates voxelized ( a voxel is the 3D equivalent of a pixel) reconstruction of the object in 3D.

Citing this work

If you find this work useful in your research, please consider citing:

@inproceedings{choy20163d,
  title={3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction},
  author={Choy, Christopher B and Xu, Danfei and Gwak, JunYoung and Chen, Kevin and Savarese, Silvio},
  booktitle = {Proceedings of the European Conference on Computer Vision ({ECCV})},
  year={2016}
}

News

  • [2020-01-25] Using a dense ocupancy grid for 3D reconstruction requires a large amount of memory and computation. We present a new auto-diff library for sparse tensors that can reconstruct objects in high resolution. Please refer to the 3D sparsity pattern reconstruction page for 3D reconstruction using a sparse tensor.

Project Page

The project page is available at http://cvgl.stanford.edu/3d-r2n2/.

Overview

Overview Left: images found on Ebay, Amazon, Right: overview of 3D-R2N2

Traditionally, single view reconstruction and multi-view reconstruction are disjoint problems that have been dealt using different approaches. In this work, we first propose a unified framework for both single and multi-view reconstruction using a 3D Recurrent Reconstruction Neural Network (3D-R2N2).

3D-Convolutional LSTM 3D-Convolutional GRU Inputs (red cells + feature) for each cell (purple)
3D-LSTM 3D-GRU 3D-LSTM

We can feed in images in random order since the network is trained to be invariant to the order. The critical component that enables the network to be invariant to the order is the 3D-Convolutional LSTM which we first proposed in this work. The 3D-Convolutional LSTM selectively updates parts that are visible and keeps the parts that are self-occluded.

Networks We used two different types of networks for the experiments: a shallow network (top) and a deep residual network (bottom).

Results

Please visit the result visualization page to view 3D reconstruction results interactively.

Datasets

We used ShapeNet models to generate rendered images and voxelized models which are available below (you can follow the installation instruction below to extract it to the default directory).

Installation

The package requires python3. You can follow the direction below to install virtual environment within the repository or install anaconda for python 3.

  • Download the repository
git clone https://github.com/chrischoy/3D-R2N2.git
cd 3D-R2N2
conda create -n py3-theano python=3.6
source activate py3-theano
conda install pygpu
pip install -r requirements.txt
  • copy the theanorc file to the $HOME directory
cp .theanorc ~/.theanorc

Running demo.py

  • Install meshlab (skip if you have another mesh viewer). If you skip this step, demo code will not visualize the final prediction.
sudo apt-get install meshlab
  • Run the demo code and save the final 3D reconstruction to a mesh file named prediction.obj
python demo.py prediction.obj

The demo code takes 3 images of the same chair and generates the following reconstruction.

Image 1 Image 2 Image 3 Reconstruction
  • Deactivate your environment when you are done
deactivate

Training the network

  • Activate the virtual environment before you run the experiments.
source py3/bin/activate
  • Download datasets and place them in a folder named ShapeNet
mkdir ShapeNet/
wget http://cvgl.stanford.edu/data2/ShapeNetRendering.tgz
wget http://cvgl.stanford.edu/data2/ShapeNetVox32.tgz
tar -xzf ShapeNetRendering.tgz -C ShapeNet/
tar -xzf ShapeNetVox32.tgz -C ShapeNet/
  • Train and test the network using the training shell script
./experiments/script/res_gru_net.sh

Note: The initial compilation might take awhile if you run the theano for the first time due to various compilations. The problem will not persist for the subsequent runs.

Using cuDNN

To use cuDNN library, you have to download cuDNN from the nvidia website. Then, extract the files to any directory and append the directory to the environment variables like the following. Please replace the /path/to/cuDNN/ to the directory that you extracted cuDNN.

export LD_LIBRARY_PATH=/path/to/cuDNN/lib64:$LD_LIBRARY_PATH
export CPATH=/path/to/cuDNN/include:$CPATH
export LIBRARY_PATH=/path/to/cuDNN/lib64:$LD_LIBRARY_PATH

For more details, please refer to http://deeplearning.net/software/theano/library/sandbox/cuda/dnn.html

Follow-up Paper

Gwak et al., Weakly supervised 3D Reconstruction with Adversarial Constraint, project website

Supervised 3D reconstruction has witnessed a significant progress through the use of deep neural networks. However, this increase in performance requires large scale annotations of 2D/3D data. In this paper, we explore inexpensive 2D supervision as an alternative for expensive 3D CAD annotation. Specifically, we use foreground masks as weak supervision through a raytrace pooling layer that enables perspective projection and backpropagation. Additionally, since the 3D reconstruction from masks is an ill posed problem, we propose to constrain the 3D reconstruction to the manifold of unlabeled realistic 3D shapes that match mask observations. We demonstrate that learning a log-barrier solution to this constrained optimization problem resembles the GAN objective, enabling the use of existing tools for training GANs. We evaluate and analyze the manifold constrained reconstruction on various datasets for single and multi-view reconstruction of both synthetic and real images.

License

MIT License

Owner
Chris Choy
Research Scientist @NVIDIA. Previously Ph.D. from Stanford Vision and Learning Lab @StanfordVL (SVL), Stanford AI Lab, SAIL.
Chris Choy
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022