Direct Multi-view Multi-person 3D Human Pose Estimation

Related tags

Deep Learningmvp
Overview

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation

[paper] [video-YouTube, video-Bilibili] [slides]

This is the official implementation of our NeurIPS-2021 work: Multi-view Pose Transformer (MvP). MvP is a simple algorithm that directly regresses multi-person 3D human pose from multi-view images.

Framework

mvp_framework

Example Result

mvp_framework

Reference

@article{wang2021mvp,
  title={Direct Multi-view Multi-person 3D Human Pose Estimation},
  author={Tao Wang and Jianfeng Zhang and Yujun Cai and Shuicheng Yan and Jiashi Feng},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

1. Installation

  1. Set the project root directory as ${POSE_ROOT}.
  2. Install all the required python packages (with requirements.txt).
  3. compile deformable operation for projective attention.
cd ./models/ops
sh ./make.sh

2. Data and Pre-trained Model Preparation

2.1 CMU Panoptic

Please follow VoxelPose to download the CMU Panoptic Dataset and PoseResNet-50 pre-trained model.

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|-- data
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...

2.2 Shelf/Campus

Please follow VoxelPose to download the Shelf/Campus Dataset.

Due to the limited and incomplete annotations of the two datasets, we use psudo ground truth 3D pose generated from VoxelPose to train the model, we expect mvp would perform much better with absolute ground truth pose data.

Please use voxelpose or other methods to generate psudo ground truth for the training set, you can also use our generated psudo GT: psudo_gt_shelf. psudo_gt_campus. psudo_gt_campus_fix_gtmorethanpred.

Due to the small dataset size, we fine-tune Panoptic pre-trained model to Shelf and Campus. Download the pretrained MvP on Panoptic from model_best_5view and model_best_3view_horizontal_view or model_best_3view_2horizon_1lookdown

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle

2.3 Human3.6M dataset

Please follow CHUNYUWANG/H36M-Toolbox to prepare the data.

2.4 Full Directory Tree

The data and pre-trained model directory tree should look like this, you can only download the Panoptic dataset and PoseResNet-50 for reproducing the main MvP result and ablation studies:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- pesudo_gt
|   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- HM36

3. Training and Evaluation

The evaluation result will be printed after every epoch, the best result can be found in the log.

3.1 CMU Panoptic dataset

We train and validate on the five selected camera views. We trained our models on 8 GPUs and batch_size=1 for each GPU, note the total iteration per epoch should be 3205, if not, please check your data.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/best_model_config.yaml

Pre-trained models

Datasets AP25 AP25 AP25 AP25 MPJPE pth
Panoptic 92.3 96.6 97.5 97.7 15.8 here

3.1.1 Ablation Experiments

You can find several ablation experiment configs under ./configs/panoptic/, for example, removing RayConv:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/ablation_remove_rayconv.yaml

3.2 Shelf/Campus datasets

As shelf/campus are very small dataset with incomplete annotation, we finetune pretrained MvP with pseudo ground truth 3D pose extracted with VoxelPose, we expect more accurate GT would help MvP achieve much higher performance.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/shelf/mvp_shelf.yaml

Pre-trained models

Datasets Actor 1 Actor 2 Actor 2 Average pth
Shelf 99.3 95.1 97.8 97.4 here
Campus 98.2 94.1 97.4 96.6 here

3.3 Human3.6M dataset

MvP also applies to the naive single-person setting, with dataset like Human3.6, to come

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/h36m/mvp_h36m.yaml

4. Evaluation Only

To evaluate a trained model, pass the config and model pth:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/validate_3d.py --cfg xxx --model_path xxx

LICENSE

This repo is under the Apache-2.0 license. For commercial use, please contact the authors.

Owner
Sea AI Lab
Sea AI Lab
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
MohammadReza Sharifi 27 Dec 13, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022