Dogs classification with Deep Metric Learning using some popular losses

Overview

Tsinghua Dogs classification with
Deep Metric Learning

1. Introduction

Tsinghua Dogs dataset

Tsinghua Dogs is a fine-grained classification dataset for dogs, over 65% of whose images are collected from people's real life. Each dog breed in the dataset contains at least 200 images and a maximum of 7,449 images. For more info, see dataset's homepage.

Following is the brief information about the dataset:

  • Number of categories: 130
  • Number of training images: 65228
  • Number of validating images: 5200

Variation in Tsinghua Dogs dataset. (a) Great Danes exhibit large variations in appearance, while (b) Norwich terriers and (c) Australian terriers are quite similar to each other. (Source)

Deep metric learning

Deep metric learning (DML) aims to measure the similarity among samples by training a deep neural network and a distance metric such as Euclidean distance or Cosine distance. For fine-grained data, in which the intra-class variances are larger than inter-class variances, DML proves to be useful in classification tasks.

Goal

In this projects, I use deep metric learning to classify dog images in Tsinghua Dogs dataset. Those loss functions are implemented:

  1. Triplet loss
  2. Proxy-NCA loss
  3. Proxy-anchor loss: In progress
  4. Soft-triple loss: In progress

I also evaluate models' performance on some common metrics:

  1. Precision at k ([email protected])
  2. Mean average precision (MAP)
  3. Top-k accuracy
  4. Normalized mutual information (NMI)


2. Benchmarks

  • Architecture: Resnet-50 for feature extractions.
  • Embedding size: 128.
  • Batch size: 48.
  • Number of epochs: 100.
  • Online hard negatives mining.
  • Augmentations:
    • Random horizontal flip.
    • Random brightness, contrast and saturation.
    • Random affine with rotation, scale and translation.
MAP [email protected] [email protected] [email protected] Top-5 NMI Download
Triplet loss 73.85% 74.66% 73.90 73.00% 93.76% 0.82
Proxy-NCA loss 89.10% 90.26% 89.28% 87.76% 99.39% 0.98
Proxy-anchor loss
Soft-triple loss


3. Visualization

Proxy-NCA loss

Confusion matrix on validation set

T-SNE on validation set

Similarity matrix of some images in validation set

  • Each cell represent the L2 distance between 2 images.
  • The closer distance to 0 (blue), the more similar.
  • The larger distance (green), the more dissimilar.

Triplet loss

Confusion matrix on validation set

T-SNE on validation set

Similarity matrix of some images in validation set

  • Each cell represent the L2 distance between 2 images.
  • The closer distance to 0 (blue), the more similar.
  • The larger distance (green), the more dissimilar.



4. Train

4.1 Install dependencies

# Create conda environment
conda create --name dml python=3.7 pip
conda activate dml

# Install pytorch and torchvision
conda install -n dml pytorch torchvision cudatoolkit=10.2 -c pytorch

# Install faiss for indexing and calulcating accuracy
# https://github.com/facebookresearch/faiss
conda install -n dml faiss-gpu cudatoolkit=10.2 -c pytorch

# Install other dependencies
pip install opencv-python tensorboard torch-summary torch_optimizer scikit-learn matplotlib seaborn requests ipdb flake8 pyyaml

4.2 Prepare Tsinghua Dogs dataset

PYTHONPATH=./ python src/scripts/prepare_TsinghuaDogs.py --output_dir data/

Directory data should be like this:

data/
└── TsinghuaDogs
    ├── High-Annotations
    ├── high-resolution
    ├── TrainAndValList
    ├── train
    │   ├── 561-n000127-miniature_pinscher
    │   │   ├── n107028.jpg
    │   │   ├── n107031.jpg
    │   │   ├── ...
    │   │   └── n107218.jp
    │   ├── ...
    │   ├── 806-n000129-papillon
    │   │   ├── n107440.jpg
    │   │   ├── n107451.jpg
    │   │   ├── ...
    │   │   └── n108042.jpg
    └── val
        ├── 561-n000127-miniature_pinscher
        │   ├── n161176.jpg
        │   ├── n161177.jpg
        │   ├── ...
        │   └── n161702.jpe
        ├── ...
        └── 806-n000129-papillon
            ├── n169982.jpg
            ├── n170022.jpg
            ├── ...
            └── n170736.jpeg

4.3 Train model

  • Train with proxy-nca loss
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=./ python src/main.py --train_dir data/TsinghuaDogs/train --test_dir data/TsinghuaDogs/val --loss proxy_nca --config src/configs/proxy_nca_loss.yaml --checkpoint_root_dir src/checkpoints/proxynca-resnet50
  • Train with triplet loss
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=./ python src/main.py --train_dir data/TsinghuaDogs/train --test_dir data/TsinghuaDogs/val --loss tripletloss --config src/configs/triplet_loss.yaml --checkpoint_root_dir src/checkpoints/tripletloss-resnet50

Run PYTHONPATH=./ python src/main.py --help for more detail about arguments.

If you want to train on 2 gpus, replace CUDA_VISIBLE_DEVICES=0 with CUDA_VISIBLE_DEVICES=0,1 and so on.

If you encounter out of memory issues, try reducing classes_per_batch and samples_per_class in src/configs/triplet_loss.yaml or batch_size in src/configs/your-loss.yaml



5. Evaluate

To evaluate, directory data should be structured like this:

data/
└── TsinghuaDogs
    ├── train
    │   ├── 561-n000127-miniature_pinscher
    │   │   ├── n107028.jpg
    │   │   ├── n107031.jpg
    │   │   ├── ...
    │   │   └── n107218.jp
    │   ├── ...
    │   ├── 806-n000129-papillon
    │   │   ├── n107440.jpg
    │   │   ├── n107451.jpg
    │   │   ├── ...
    │   │   └── n108042.jpg
    └── val
        ├── 561-n000127-miniature_pinscher
        │   ├── n161176.jpg
        │   ├── n161177.jpg
        │   ├── ...
        │   └── n161702.jpe
        ├── ...
        └── 806-n000129-papillon
            ├── n169982.jpg
            ├── n170022.jpg
            ├── ...
            └── n170736.jpeg

Plot confusion matrix

PYTHONPATH=./ python src/scripts/visualize_confusion_matrix.py --test_images_dir data/TshinghuaDogs/val/ --reference_images_dir data/TshinghuaDogs/train -c src/checkpoints/proxynca-resnet50.pth

Plot T-SNE

PYTHONPATH=./ python src/scripts/visualize_tsne.py --images_dir data/TshinghuaDogs/val/ -c src/checkpoints/proxynca-resnet50.pth

Plot similarity matrix

PYTHONPATH=./ python src/scripts/visualize_similarity.py  --images_dir data/TshinghuaDogs/val/ -c src/checkpoints/proxynca-resnet50.pth


6. Developement

.
├── __init__.py
├── README.md
├── src
│   ├── main.py  # Entry point for training.
│   ├── checkpoints  # Directory to save model's weights while training
│   ├── configs  # Configurations for each loss function
│   │   ├── proxy_nca_loss.yaml
│   │   └── triplet_loss.yaml
│   ├── dataset.py
│   ├── evaluate.py  # Calculate mean average precision, accuracy and NMI score
│   ├── __init__.py
│   ├── logs
│   ├── losses
│   │   ├── __init__.py
│   │   ├── proxy_nca_loss.py
│   │   └── triplet_margin_loss.py
│   ├── models  # Feature extraction models
│   │   ├── __init__.py
│   │   └── resnet.py
│   ├── samplers
│   │   ├── __init__.py
│   │   └── pk_sampler.py  # Sample triplets in each batch for triplet loss
│   ├── scripts
│   │   ├── __init__.py
│   │   ├── prepare_TsinghuaDogs.py  # download and prepare dataset for training and validating
│   │   ├── visualize_confusion_matrix.py
│   │   ├── visualize_similarity.py
│   │   └── visualize_tsne.py
│   ├── trainer.py  # Helper functions for training
│   └── utils.py  # Some utility functions
└── static
    ├── proxynca-resnet50
    │   ├── confusion_matrix.jpg
    │   ├── similarity.jpg
    │   ├── tsne_images.jpg
    │   └── tsne_points.jpg
    └── tripletloss-resnet50
        ├── confusion_matrix.jpg
        ├── similarity.jpg
        ├── tsne_images.jpg
        └── tsne_points.jpg

7. Acknowledgement

@article{Zou2020ThuDogs,
    title={A new dataset of dog breed images and a benchmark for fine-grained classification},
    author={Zou, Ding-Nan and Zhang, Song-Hai and Mu, Tai-Jiang and Zhang, Min},
    journal={Computational Visual Media},
    year={2020},
    url={https://doi.org/10.1007/s41095-020-0184-6}
}
Owner
QuocThangNguyen
Computer Vision Researcher
QuocThangNguyen
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023