6D Grasping Policy for Point Clouds

Overview

GA-DDPG

[website, paper]

image

Installation

git clone https://github.com/liruiw/GA-DDPG.git --recursive
  1. Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, python 2.7 / 3.6

    • (Required for Training) - Install OMG submodule and reuse conda environment.
    • (Docker) See OMG Docker for details.
    • (Demo) - Install GA-DDPG inside a new conda environment
      conda create --name gaddpg python=3.6.9
      conda activate gaddpg
      pip install -r requirements.txt
      
  2. Install PointNet++

  3. Download environment data bash experiments/scripts/download_data.sh

Pretrained Model Demo

  1. Download pretrained models bash experiments/scripts/download_model.sh
  2. Demo model test bash experiments/scripts/test_demo.sh
Example 1 Example 2

Save Data and Offline Training

  1. Download example offline data bash experiments/scripts/download_offline_data.sh The .npz dataset (saved replay buffer) can be found in data/offline_data and can be loaded for training.
  2. To save extra gpus for online rollouts, use the offline training script bash ./experiments/scripts/train_offline.sh bc_aux_dagger.yaml BC
  3. Saving dataset bash ./experiments/scripts/train_online_save_buffer.sh bc_save_data.yaml BC.

Online Training and Testing

  1. We use ray for parallel rollout and training. The training scripts might require adjustment according to the local machine. See config.py for some notes.
  2. Training online bash ./experiments/scripts/train_online_visdom.sh td3_critic_aux_policy_aux.yaml DDPG. Use visdom and tensorboard to monitor.
  3. Testing on YCB objects bash ./experiments/scripts/test_ycb.sh demo_model. Replace demo_model with trained models. Logs and videos would be saved to output_misc

Note

  1. Checkout core/test_realworld_ros_final.py for an example of real-world usages.
  2. Related Works (OMG, ACRONYM, 6DGraspNet, 6DGraspNet-Pytorch, ContactGraspNet, Unseen-Clustering)
  3. To use the full Acronym dataset with Shapenet meshes, please follow ACRONYM to download the meshes and grasps and follow OMG-Planner to process and save in /data. filter_shapenet.json can then be used for training.
  4. Please use Github issue tracker to report bugs. For other questions please contact Lirui Wang.

File Structure

├── ...
├── GADDPG
|   |── data 		# training data
|   |   |── grasps 		# grasps from the ACRONYM dataset
|   |   |── objects 		# object meshes, sdf, urdf, etc
|   |   |── robots 		# robot meshes, urdf, etc
|   |   └── gaddpg_scenes	 	# test scenes
|   |── env 		# environment-related code
|   |   |── panda_scene 		# environment and task
|   |   └── panda_gripper_hand_camera 		# franka panda with gripper and camera
|   |── OMG 		# expert planner submodule
|   |── experiments 		# experiment scripts
|   |   |── config 		# hyperparameters for training, testing and environment
|   |   |── scripts 		# main running scripts
|   |   |── model_spec 		# network architecture spec
|   |   |── cfgs 		# experiment config and hyperparameters
|   |   └── object_index 		# object indexes
|   |── core 		# agents and learning
|   |   |──  train_online 		# online training
|   |   |──  train_test_offline 	# testing and offline training
|   |   |──  network 		# network architecture
|   |   |──  test_realworld_ros_final 		# real-world script example
|   |   |──  agent 		# main agent code
|   |   |──  replay_memory 		# replay buffer
|   |   |──  trainer 	# ray-related training setup
|   |   └── ...
|   |── output 		# trained model
|   |── output_misc 	# log and videos
|   └── ...
└── ...

Citation

If you find GA-DDPG useful in your research, please consider citing:

@inproceedings{wang2020goal,
	author    = {Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox},
	title     = {Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds},
	booktitle = {arXiv:2010.00824},
	year      = {2020}
}

License

The GA-DDPG is licensed under the MIT License.

Owner
Lirui Wang
MIT CSAIL Ph.D. Student. Previous UWCSE and NVIDIA.
Lirui Wang
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023