Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Overview

Conceptual 12M

We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-training. It is larger and covers a much more diverse set of visual concepts than the Conceptual Captions (CC3M), a dataset that is widely used for pre-training and end-to-end training of image captioning models. Check our paper for further details.

Download

Click here to download (2.5GB)

Format (.tsv)

[image_url_1]\t[caption_1]
[image_url_2]\t[caption_2]
[image_url_3]\t[caption_3]
…
[image_url_N]\t[caption_N]

Cite

If you use this dataset in your research, please cite:

Soravit Changpinyo, Piyush Sharma, Nan Ding, Radu Soricut. Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts. CVPR 2021.

@inproceedings{changpinyo2021cc12m,
  title = {{Conceptual 12M}: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts},
  author = {Changpinyo, Soravit and Sharma, Piyush and Ding, Nan and Soricut, Radu},
  booktitle = {CVPR},
  year = {2021},
}

FAQs

Q1: Can you provide image pixels?

A1: We do not own any of the images in the dataset and hence cannot legally provide them to you. The owner of an image can choose to delete it at anytime, in which case the image will no longer be available. Due to this, unfortunately, some images in the dataset will be lost over time, and we are unable to help with this issue.

Q2: Is it normal that a subset of images cannot be retrieved from the provided URLs?

A2: Yes. See Q1.

Q3: Is CC12M an “expanded” CC3M?

A3: No, CC12M is on purpose designed for vision-and-language pre-training, and meant to be disjoint from CC3M. CC3M is cleaner and more appropriate for fine-tuning, but can be used in conjunction with CC12M for pre-training, as illustrated in our paper. Coincidentally, their intersection is found to be non-zero — approximately 63K URLs.

Contact Us

If you have a question not provided in the FAQs above, please create an issue in this repository.

If you would like to share feedback or report concerns, please email us at [email protected].

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022