Transformer model implemented with Pytorch

Overview

transformer-pytorch

Transformer model implemented with Pytorch

Attention is all you need-[Paper]

Architecture

Transformer


Self-Attention

Attention

self_attention.py

[N, len, heads, head_dim] values = values.reshape(N, value_len, self.heads, self.head_dim) keys = keys.reshape(N, key_len, self.heads, self.head_dim) queries = queries.reshape(N, query_len, self.heads, self.head_dim) # Einsum does matrix mult. for query*keys for each training example # with every other training example, don't be confused by einsum # it's just how I like doing matrix multiplication & bmm energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # queries shape: (N, query_len, heads, heads_dim), # keys shape: (N, key_len, heads, heads_dim) # energy: (N, heads, query_len, key_len) # Mask padded indices so their weights become 0 if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) # Normalize energy values similarly to seq2seq + attention # so that they sum to 1. Also divide by scaling factor for # better stability attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3) # attention shape: (N, heads, query_len, key_len) out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape( N, query_len, self.heads * self.head_dim ) # attention shape: (N, heads, query_len, key_len) # values shape: (N, value_len, heads, heads_dim) # out after matrix multiply: (N, query_len, heads, head_dim), then # we reshape and flatten the last two dimensions. out = self.fc_out(out) # Linear layer doesn't modify the shape, final shape will be # (N, query_len, embed_size) return out ">
 class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super(SelfAttention, self).__init__()
        self.embed_size = embed_size
        self.heads      = heads
        self.head_dim   = embed_size // heads

        assert (
                self.head_dim * heads == embed_size
        ), "Embedding size needs to be divisible by heads"

        self.values  = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.keys    = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)
        self.fc_out  = nn.Linear(heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        # Get number of training examples
        N = query.shape[0]

        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        values  = self.values(values)
        keys    = self.keys(keys)
        queries = self.queries(query)
        
        # Split the embedding into self.heads different pieces
        # Multi head
        # [N, len, embed_size] --> [N, len, heads, head_dim]
        values    = values.reshape(N, value_len, self.heads, self.head_dim)
        keys      = keys.reshape(N, key_len, self.heads, self.head_dim)
        queries   = queries.reshape(N, query_len, self.heads, self.head_dim)

        # Einsum does matrix mult. for query*keys for each training example
        # with every other training example, don't be confused by einsum
        # it's just how I like doing matrix multiplication & bmm
        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        # queries shape: (N, query_len, heads, heads_dim),
        # keys shape: (N, key_len, heads, heads_dim)
        # energy: (N, heads, query_len, key_len)

        # Mask padded indices so their weights become 0
        if mask is not None:
            energy = energy.masked_fill(mask == 0, float("-1e20"))

        # Normalize energy values similarly to seq2seq + attention
        # so that they sum to 1. Also divide by scaling factor for
        # better stability
        attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
        # attention shape: (N, heads, query_len, key_len)

        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.heads * self.head_dim
        )
        # attention shape: (N, heads, query_len, key_len)
        # values shape: (N, value_len, heads, heads_dim)
        # out after matrix multiply: (N, query_len, heads, head_dim), then
        # we reshape and flatten the last two dimensions.

        out = self.fc_out(out)
        # Linear layer doesn't modify the shape, final shape will be
        # (N, query_len, embed_size)

        return out

Encoder Block

Encoder

encoder_block.py

class EncoderBlock(nn.Module):
    def __init__(self, embed_size, heads, dropout, forward_expansion):
        super(EncoderBlock, self).__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.norm1     = nn.LayerNorm(embed_size)
        self.norm2     = nn.LayerNorm(embed_size)

        self.feed_forward = nn.Sequential(
            nn.Linear(embed_size, forward_expansion * embed_size),
            nn.ReLU(),
            nn.Linear(forward_expansion * embed_size, embed_size),
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, value, key, query, mask):
        attention = self.attention(value, key, query, mask)

        # Add skip connection, run through normalization and finally dropout
        x       = self.dropout(self.norm1(attention + query))
        forward = self.feed_forward(x)
        out     = self.dropout(self.norm2(forward + x))
        return out

Encoder

Encoder

encoder.py

class Encoder(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length,
    ):

        super(Encoder, self).__init__()
        self.embed_size         = embed_size
        self.device             = device
        self.word_embedding     = nn.Embedding(src_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                EncoderBlock(
                    embed_size,
                    heads,
                    dropout=dropout,
                    forward_expansion=forward_expansion,
                )
                for _ in range(num_layers)
            ]
        )

        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        N, seq_length = x.shape
        positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        out = self.dropout(
            (self.word_embedding(x) + self.position_embedding(positions))
        )

        # In the Encoder the query, key, value are all the same, it's in the
        # decoder this will change. This might look a bit odd in this case.
        for layer in self.layers:
            out = layer(out, out, out, mask)

        return out

Decoder Block

DecoderBlock

docoder_block.py

class DecoderBlock(nn.Module):
    def __init__(self, embed_size, heads, forward_expansion, dropout, device):
        super(DecoderBlock, self).__init__()
        self.norm              = nn.LayerNorm(embed_size)
        self.attention         = SelfAttention(embed_size, heads=heads)
        self.transformer_block = EncoderBlock(
            embed_size, heads, dropout, forward_expansion
        )
        self.dropout           = nn.Dropout(dropout)

    def forward(self, x, value, key, src_mask, trg_mask):
        attention = self.attention(x, x, x, trg_mask)
        query     = self.dropout(self.norm(attention + x))
        out       = self.transformer_block(value, key, query, src_mask)
        return out

Decoder

Decoder

decoder.py

class Decoder(nn.Module):
    def __init__(
            self,
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
    ):
        super(Decoder, self).__init__()
        self.device             = device
        self.word_embedding     = nn.Embedding(trg_vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.layers = nn.ModuleList(
            [
                DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
                for _ in range(num_layers)
            ]
        )
        
        self.dropout = nn.Dropout(dropout)
        self.fc_out  = nn.Linear(embed_size, trg_vocab_size)


    def forward(self, x, enc_out, src_mask, trg_mask):
        N, seq_length = x.shape
        positions     = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
        x             = self.dropout(
            (self.word_embedding(x) + self.position_embedding(positions))
        )

        for layer in self.layers:
            x = layer(x, enc_out, enc_out, src_mask, trg_mask)

        out = self.fc_out(x)
        return out

Transformer

transformer.py

class Transformer(nn.Module):
    def __init__(
            self,
            src_vocab_size,
            trg_vocab_size,
            src_pad_idx,
            trg_pad_idx,
            embed_size=512,
            num_layers=6,
            forward_expansion=4,
            heads=8,
            dropout=0,
            device="cpu",
            max_length=100,
    ):

        super(Transformer, self).__init__()

        self.encoder = Encoder(
            src_vocab_size,
            embed_size,
            num_layers,
            heads,
            device,
            forward_expansion,
            dropout,
            max_length,
        )

        self.decoder = Decoder(
            trg_vocab_size,
            embed_size,
            num_layers,
            heads,
            forward_expansion,
            dropout,
            device,
            max_length,
        )

        self.src_pad_idx = src_pad_idx
        self.trg_pad_idx = trg_pad_idx
        self.device      = device

    def make_src_mask(self, src):
        src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
        # (N, 1, 1, src_len)
        return src_mask.to(self.device)

    def make_trg_mask(self, trg):
        N, trg_len = trg.shape
        trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
            N, 1, trg_len, trg_len
        )

        return trg_mask.to(self.device)

    def forward(self, src, trg):
        src_mask = self.make_src_mask(src)
        trg_mask = self.make_trg_mask(trg)
        enc_src = self.encoder(src, src_mask)
        out = self.decoder(trg, enc_src, src_mask, trg_mask)
        return out

Authors

Owner
Mingu Kang
SW Engineering / ML / DL / Blockchain Dept. of Software Engineering, Jeonbuk National University
Mingu Kang
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022