A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

Overview

CapsGNN

PWC codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019).

Abstract

The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph embeddings. Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects. The attention module incorporated in CapsGNN is used to tackle graphs with various sizes which also enables the model to focus on critical parts of the graphs. Our extensive evaluations with 10 graph-structured datasets demonstrate that CapsGNN has a powerful mechanism that operates to capture macroscopic properties of the whole graph by data-driven. It outperforms other SOTA techniques on several graph classification tasks, by virtue of the new instrument.

This repository provides a PyTorch implementation of CapsGNN as described in the paper:

Capsule Graph Neural Network. Zhang Xinyi, Lihui Chen. ICLR, 2019. [Paper]

The core Capsule Neural Network implementation adapted is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"edges": [[0, 1],[1, 2],[2, 3],[3, 4]],
 "labels": {"0": "A", "1": "B", "2": "C", "3": "A", "4": "B"},
 "target": 1}

The **edges** key has an edge list value which descibes the connectivity structure. The **labels** key has labels for each node which are stored as a dictionary -- within this nested dictionary labels are values, node identifiers are keys. The **target** key has an integer value which is the class membership.

Outputs

The predictions are saved in the `output/` directory. Each embedding has a header and a column with the graph identifiers. Finally, the predictions are sorted by the identifier column.

Options

Training a CapsGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.
  --prediction-path   STR    Output predictions file.     Default is `output/watts_predictions.csv`.

Model options

  --epochs                      INT     Number of epochs.                  Default is 100.
  --batch-size                  INT     Number fo graphs per batch.        Default is 32.
  --gcn-filters                 INT     Number of filters in GCNs.         Default is 20.
  --gcn-layers                  INT     Number of GCNs chained together.   Default is 2.
  --inner-attention-dimension   INT     Number of neurons in attention.    Default is 20.  
  --capsule-dimensions          INT     Number of capsule neurons.         Default is 8.
  --number-of-capsules          INT     Number of capsules in layer.       Default is 8.
  --weight-decay                FLOAT   Weight decay of Adam.              Defatuls is 10^-6.
  --lambd                       FLOAT   Regularization parameter.          Default is 0.5.
  --theta                       FLOAT   Reconstruction loss weight.        Default is 0.1.
  --learning-rate               FLOAT   Adam learning rate.                Default is 0.01.

Examples

The following commands learn a model and save the predictions. Training a model on the default dataset:

$ python src/main.py

Training a CapsGNNN model for a 100 epochs.

$ python src/main.py --epochs 100

Changing the batch size.

$ python src/main.py --batch-size 128

License

Comments
  •  Coordinate Addition module & Routing

    Coordinate Addition module & Routing

    Hi, thanks for your codes of GapsGNN. And I have some questions about Coordinate Addition module and Routing.

    1. Do you use Coordinate Addition module in this codes?
    2. In /src/layers.py, line 137 : c_ij = torch.nn.functional.softmax(b_ij, dim=0) . At this time, b_ij.size(0) == 1, why use dim =0 ?

    Thanks again.

    opened by S-rz 4
  • Something about reshape

    Something about reshape

    Hi @benedekrozemberczki ! Thank you for your work!

    I have a question at line 61 and 62 of CapsGNN/src/capsgnn.py

    hidden_representations = torch.cat(tuple(hidden_representations)) hidden_representations = hidden_representations.view(1, self.args.gcn_layers, self.args.gcn_filters,-1)

    Why you directly reshape L*N,D to 1,L,D,N instead of using permutation after reshape, e.g

    hidden_representations = hidden_representations.view(1, self.args.gcn_layers, -1,self.args.gcn_filters).permute(0,1,3,2)

    Thank you for your help!

    opened by yanx27 4
  • Reproduce Issues

    Reproduce Issues

    Hi, thanks for your PyTorch codes of GapsGNN. I try to run the codes on NCI, DD, and other graph classification datasets, but it doesn't work (For example, training loss converges to 2.0, and test acc is about 50% on NCI1 after several iterations.) How should I do if I want to run these codes on NCI, DD and etc? Thanks again.

    opened by veophi 1
  • D&D dataset

    D&D dataset

    I notice some datasets in your paper such as D&D dataset. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by try-to-anything 1
  • Other datasets

    Other datasets

    I notice some datasets in your paper such as RE-M5K and RE-M12K. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by HongyangGao 1
  • Not able to install torch-scatter with torch 0.4.1

    Not able to install torch-scatter with torch 0.4.1

    Hello,

    Thanks for sharing the implementation.

    While I'm try to run your code I get some error for installing the environment. I have torch 0.4.1, but not able to install torch-scatter.Got the following error: fatal error: torch/extension.h: No such file or directory

    But I can successfully install them for torch 1.0.

    Is your code working for torch 1.0? Or how to install torch-scatter for torch 0.4.1?

    Details:

    $ pip list Package Version


    backcall 0.1.0
    certifi 2018.8.24
    .... torch 0.4.1.post2 torch-geometric 1.1.1
    torchfile 0.1.0
    torchvision 0.2.1
    tornado 5.1
    tqdm 4.31.1
    traitlets 4.3.2
    urllib3 1.23
    visdom 0.1.8.5
    vispy 0.5.3
    .... ....

    $pip install torch-scatter

    opened by jkuh626 1
  • how to repeat your expriments?

    how to repeat your expriments?

    Enumerating feature and target values.

    100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:00<00:00, 14754.82it/s]

    Training started.

    Epochs: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:05<00:00, 1.90it/s] CapsGNN (Loss=0.7279): 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.92it/s]

    Scoring.

    100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:00<00:00, 128.47it/s]

    Accuracy: 0.3333

    Accuracy is too small

    opened by robotzheng 1
  • default input dir for graphs is

    default input dir for graphs is "input"

    The README mentions the default train and test graphs to be in dataset/train and dataset/test, whereas they are in input/train and input/test respectively. The param_parser.py has the correct default paths nevertheless.

    opened by Utkarsh87 0
Releases(v_0001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022