PyTorch implementation of TSception V2 using DEAP dataset

Overview

TSception

This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper:

Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai Guan, "TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition", under review of IEEE Transactions on Affective Computing, preprint available at arXiv

It is an end-to-end multi-scale convolutional neural network to do classification from raw EEG signals. Previous version of TSception(IJCNN'20) can be found at website

Prepare the python virtual environment

Please create an anaconda virtual environment by:

$ conda create --name TSception

Activate the virtual environment by:

$ conda activate TSception

Install the requirements by:

$ pip3 install -r requirements.txt

Run the code

Please download the DEAP dataset at website. Please place the "data_preprocessed_python" folder at the same location of the script (./code/). To run the code for arousal dimension, please type the following command in terminal:

$ python3 main-DEAP.py --data-path './data_preprocessed_python/' --label-type 'A'

To run the experiments for valance please set the --label-type 'V'. The results will be saved into "result.txt" located at the same place as the script.

Reproduce the results

We highly suggest to run the code on a Ubuntu 18.04 or above machine using anaconda with the provided requirements to reproduce the results. You can also download the saved model at website to reproduce the results in the paper. After extracting the downloaded "save.zip", please place it at the same location of the scripts, run the code by:

$ python3 main-DEAP.py --data-path './data_preprocessed_python/' --label-type 'A' --reproduce True

Acknowledgment

The author would like to thank Su Zhang, Quihao Zeng and Tushar Chouhan for checking the code

Cite

Please cite our paper if you use our code in your own work:

@misc{ding2021tsception,
      title={TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition}, 
      author={Yi Ding and Neethu Robinson and Su Zhang and Qiuhao Zeng and Cuntai Guan},
      year={2021},
      eprint={2104.02935},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

OR

@INPROCEEDINGS{9206750,
  author={Y. {Ding} and N. {Robinson} and Q. {Zeng} and D. {Chen} and A. A. {Phyo Wai} and T. -S. {Lee} and C. {Guan}},
  booktitle={2020 International Joint Conference on Neural Networks (IJCNN)}, 
  title={TSception:A Deep Learning Framework for Emotion Detection Using EEG}, 
  year={2020},
  volume={},
  number={},
  pages={1-7},
  doi={10.1109/IJCNN48605.2020.9206750}}
Owner
Yi Ding
Ph.D. candidate in Computer Science and Engineering. Research interests: deep/machine learning, brain-computer interface, artificial intelligence
Yi Ding
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023