Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

Overview

StrengthNet

Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

https://arxiv.org/abs/2110.03156

Dependency

Ubuntu 18.04.5 LTS

  • GPU: Quadro RTX 6000
  • Driver version: 450.80.02
  • CUDA version: 11.0

Python 3.5

  • tensorflow-gpu 2.0.0b1 (cudnn=7.6.0)
  • scipy
  • pandas
  • matplotlib
  • librosa

Environment set-up

For example,

conda create -n strengthnet python=3.5
conda activate strengthnet
pip install -r requirements.txt
conda install cudnn=7.6.0

Usage

  1. Run python utils.py to extract .wav to .h5;

  2. Run python train.py to train a CNN-BLSTM based StrengthNet;

Evaluating new samples

  1. Put the waveforms you wish to evaluate in a folder. For example, / /

  2. Run python test.py --rootdir / /

This script will evaluate all the .wav files in / / , and write the results to / / /StrengthNet_result_raw.txt .

By default, the output/strengthnet.h5 pretrained model is used.

Citation

If you find this work useful in your research, please consider citing:

@misc{liu2021strengthnet,
      title={StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis}, 
      author={Rui Liu and Berrak Sisman and Haizhou Li},
      year={2021},
      eprint={2110.03156},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

Resources

The ESD corpus is released by the HLT lab, NUS, Singapore.

The strength scores for the English samples of the ESD corpus are available here.


Acknowledgements:

MOSNet: https://github.com/lochenchou/MOSNet

Relative Attributes: Relative Attributes

License

This work is released under MIT License (see LICENSE file for details).

Owner
RuiLiu
https://ttslr.github.io/
RuiLiu
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023