李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

Overview

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长!

打滚卖萌求star求fork!

0.效果展示

1.模型简介

1.1AnimeGANv2

本文使用了animeGANv2进行了视频的风格迁移。
animeGANv2,顾名思义,是其前作AnimeGAN的改进版,改进方向主要在以下4点:

  • 解决了生成的图像中的高频伪影问题。
  • 它易于训练,并能直接达到论文所述的效果。
  • 进一步减少生成器网络的参数数量。(现在生成器大小 8.17Mb)
  • 尽可能多地使用来自BD电影的新的高质量的风格数据。
    效果图参考:
    animeGANv2
    本文则是使用了paddlepaddle预训练好的animeGANv2模型对李云龙名场面视频进行了风格化迁移,详情请看下文分解。

2.实现思路

flow

3.素材准备

首先要找到自己要操作的视频素材,将视频的音频单独提取出来备用
我自己找的资源放在了codes/videos/liyunlong文件夹下,是李云龙名场面:
你咋不敢跟旅长干一架呢!→旅长我给你跪下了 名场面

4.代码实操:

话不多说,首先是环境的基本配置

  • 安装基本环境
!pip install -r codes/PaddleGAN-develop/requirements.txt
  • 导入基本环境
import paddle 
import os 
import sys 
sys.path.insert(0,'codes/PaddleGAN-develop')
from ppgan.apps import AnimeGANPredictor

5.GAN它!

友情提示:此处最好使用GPU环境,cpu推理属实是有点点慢
进行模型的推理:

使用paddlepaddle预训练好的animeGANv2模型对视频进行风格迁移:
from ppgan.apps import AnimeGANPredictor
import cv2

predictor = AnimeGANPredictor('',None,)
video_src = 'codes/videos/liyunlong/格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4'
video_ = cv2.VideoCapture(video_src)
video_name_ = os.path.basename(video_src)
total_frames = video_.get(cv2.CAP_PROP_FRAME_COUNT)
fps_ = video_.get(cv2.CAP_PROP_FPS)
print("video {}, fps:{}, total frames:{}...".format(video_name_, fps_, total_frames))
frame_count_ = 0
save_per_frames = 1
dst_dir = 'codes/videos/liyunlong/'
out_video = cv2.VideoWriter('{}/hayao_{}'.format(dst_dir, video_name_),
                                cv2.VideoWriter_fourcc(*'DIVX'), int(fps_),
                                (int(video_.get(3)), int(video_.get(4))))
print('now begin...')
while True:
    ret_, frame_ = video_.read()
    if not ret_:  # or len(fps_list_) == 0:
        print('end of video...')
        break
    result_frame = predictor.anime_image_only(frame_)
    if frame_count_ % save_per_frames == 0:
        out_video.write(result_frame)
    frame_count_ = frame_count_ + 1
    if frame_count_ % 100 == 0:
        print("{}/{} processed...".format(frame_count_, int(total_frames)), flush=False)

6.最终视频

合成最终所需要的视频:

# 合并生成的视频和之前分离的音频:
!ffmpeg -i codes/videos/liyunlong/hayao_格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4 -i codes/videos/liyunlong/音频1.aac -c:v copy -c:a aac -strict experimental codes/videos/liyunlong/李云龙二次元化.mp4

这样就大功告成啦~~~
你可以在此基础上:

  • 更换你喜欢的视频
  • 更换其他paddle预训练好的模型
  • 甚至可以尝试自己动手训练定制化的模型!

打滚卖萌求star、fork!

PaddleGAN 的基础上做了些微小的改动,鸣谢.

Owner
oukohou
Hello there.
oukohou
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022