李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

Overview

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长!

打滚卖萌求star求fork!

0.效果展示

1.模型简介

1.1AnimeGANv2

本文使用了animeGANv2进行了视频的风格迁移。
animeGANv2,顾名思义,是其前作AnimeGAN的改进版,改进方向主要在以下4点:

  • 解决了生成的图像中的高频伪影问题。
  • 它易于训练,并能直接达到论文所述的效果。
  • 进一步减少生成器网络的参数数量。(现在生成器大小 8.17Mb)
  • 尽可能多地使用来自BD电影的新的高质量的风格数据。
    效果图参考:
    animeGANv2
    本文则是使用了paddlepaddle预训练好的animeGANv2模型对李云龙名场面视频进行了风格化迁移,详情请看下文分解。

2.实现思路

flow

3.素材准备

首先要找到自己要操作的视频素材,将视频的音频单独提取出来备用
我自己找的资源放在了codes/videos/liyunlong文件夹下,是李云龙名场面:
你咋不敢跟旅长干一架呢!→旅长我给你跪下了 名场面

4.代码实操:

话不多说,首先是环境的基本配置

  • 安装基本环境
!pip install -r codes/PaddleGAN-develop/requirements.txt
  • 导入基本环境
import paddle 
import os 
import sys 
sys.path.insert(0,'codes/PaddleGAN-develop')
from ppgan.apps import AnimeGANPredictor

5.GAN它!

友情提示:此处最好使用GPU环境,cpu推理属实是有点点慢
进行模型的推理:

使用paddlepaddle预训练好的animeGANv2模型对视频进行风格迁移:
from ppgan.apps import AnimeGANPredictor
import cv2

predictor = AnimeGANPredictor('',None,)
video_src = 'codes/videos/liyunlong/格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4'
video_ = cv2.VideoCapture(video_src)
video_name_ = os.path.basename(video_src)
total_frames = video_.get(cv2.CAP_PROP_FRAME_COUNT)
fps_ = video_.get(cv2.CAP_PROP_FPS)
print("video {}, fps:{}, total frames:{}...".format(video_name_, fps_, total_frames))
frame_count_ = 0
save_per_frames = 1
dst_dir = 'codes/videos/liyunlong/'
out_video = cv2.VideoWriter('{}/hayao_{}'.format(dst_dir, video_name_),
                                cv2.VideoWriter_fourcc(*'DIVX'), int(fps_),
                                (int(video_.get(3)), int(video_.get(4))))
print('now begin...')
while True:
    ret_, frame_ = video_.read()
    if not ret_:  # or len(fps_list_) == 0:
        print('end of video...')
        break
    result_frame = predictor.anime_image_only(frame_)
    if frame_count_ % save_per_frames == 0:
        out_video.write(result_frame)
    frame_count_ = frame_count_ + 1
    if frame_count_ % 100 == 0:
        print("{}/{} processed...".format(frame_count_, int(total_frames)), flush=False)

6.最终视频

合成最终所需要的视频:

# 合并生成的视频和之前分离的音频:
!ffmpeg -i codes/videos/liyunlong/hayao_格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4 -i codes/videos/liyunlong/音频1.aac -c:v copy -c:a aac -strict experimental codes/videos/liyunlong/李云龙二次元化.mp4

这样就大功告成啦~~~
你可以在此基础上:

  • 更换你喜欢的视频
  • 更换其他paddle预训练好的模型
  • 甚至可以尝试自己动手训练定制化的模型!

打滚卖萌求star、fork!

PaddleGAN 的基础上做了些微小的改动,鸣谢.

Owner
oukohou
Hello there.
oukohou
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022