============================================================================================================ `MILA will stop developing Theano <https://groups.google.com/d/msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ>`_. The PyMC developers are continuing Theano development in a `fork <https://github.com/pymc-devs/theano-pymc>`_. ============================================================================================================ To install the package, see this page: http://deeplearning.net/software/theano/install.html For the documentation, see the project website: http://deeplearning.net/software/theano/ Related Projects: https://github.com/Theano/Theano/wiki/Related-projects It is recommended that you look at the documentation on the website, as it will be more current than the documentation included with the package. In order to build the documentation yourself, you will need sphinx. Issue the following command: :: python ./doc/scripts/docgen.py Documentation is built into ``html/`` The PDF of the documentation can be found at ``html/theano.pdf`` ================ DIRECTORY LAYOUT ================ ``Theano`` (current directory) is the distribution directory. * ``Theano/theano`` contains the package * ``Theano/theano`` has several submodules: * ``gof`` + ``compile`` are the core * ``scalar`` depends upon core * ``tensor`` depends upon ``scalar`` * ``sparse`` depends upon ``tensor`` * ``sandbox`` can depend on everything else * ``Theano/examples`` are copies of the example found on the wiki * ``Theano/benchmark`` and ``Theano/examples`` are in the distribution, but not in the Python package * ``Theano/bin`` contains executable scripts that are copied to the bin folder when the Python package is installed * Tests are distributed and are part of the package, i.e. fall in the appropriate submodules * ``Theano/doc`` contains files and scripts used to generate the documentation * ``Theano/html`` is where the documentation will be generated
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
Overview
A Player for Kanye West's Stem Player. Sort of an emulator.
Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA
Hummingbird compiles trained ML models into tensor computation for faster inference.
Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se
The Agriculture Domain of ERPNext comes with features to record crops and land
Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac
Pytorch library for seismic data augmentation
Pytorch library for seismic data augmentation
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain
Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles
Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.
Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)
Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results
EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti
Python package provinding tools for artistic interactive applications using AI
Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open
Codebase for the Summary Loop paper at ACL2020
Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.
AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务
ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.
NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,
A vision library for performing sliced inference on large images/small objects
SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta
Semi-Supervised Learning, Object Detection, ICCV2021
End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,