face property detection pytorch

Overview

face-property-detection-pytorch

Python Python torch

1. Data structure

The structure of landmarks_jpg is like below:

|--celeba1
|----celeba_face
|------000001.jpg
|------000002.jpg
|------ .....
|------020000.jpg
|----celeba_raw_pic
|------000001.jpg
|------000002.jpg
|------ .....
|------020000.jpg

The celeba_raw_pic is the original picture that we do not make any processing. The celeba_face is the face region of the raw pricture.

img2.png

figure1: raw picture

img1.png

figure2: face region of raw picture

You can run the below command to finish the data processing.

python3 create_data.py 

This command will use MTCNN model to extract the face region. However, some pictures cannot be extracted by the model. For my test, I can not cut out the face region of the below picture.

# file 000199.jpg cannot detect face
# file 001401.jpg cannot detect face
# file 002214.jpg cannot detect face
# file 002432.jpg cannot detect face
# file 002920.jpg cannot detect face
# file 003928.jpg cannot detect face
# file 003946.jpg cannot detect face
# file 004932.jpg cannot detect face
# file 005283.jpg cannot detect face
# file 006010.jpg cannot detect face
# file 006531.jpg cannot detect face
# file 007726.jpg cannot detect face
# file 008287.jpg cannot detect face
# file 011529.jpg cannot detect face
# file 011793.jpg cannot detect face
# file 013374.jpg cannot detect face
# file 013654.jpg cannot detect face
# file 014999.jpg cannot detect face
# file 016530.jpg cannot detect face
# file 016797.jpg cannot detect face
# file 017282.jpg cannot detect face
# file 017586.jpg cannot detect face
# file 018309.jpg cannot detect face
# file 018599.jpg cannot detect face
# file 018884.jpg cannot detect face
# file 019205.jpg cannot detect face
# file 019377.jpg cannot detect face

So I replace them with 000001.jpg. Also, I revise the label file list_attr_celeba.txt. Replace the issue items with 000001.jpg and I get the list_attr_celeba-face.txt You can use BeyondCompare to diff the changes that I make img.png

You can download the data from the cloud drive:

name link
celeba_face.zip https://pan.baidu.com/s/15nsbvla8eCy_n3EsUMH36Q code:5ipn
celeba_raw_pic.zip https://pan.baidu.com/s/1WM3Zo3zLfKsAFvrDl03suQ code:3q70

2. how to train

First, install the third-party package:

pip install -r requirements.txt

Then just simply run the below command:

python3 train.py

if you want to use the pretrained models, you can revise the below code as you need:

load_pretrain_model = False
model_dir=r".\pretrain_models\model-resnet-50-justface-state.ptn"
if load_pretrain_model:
    checkpoint = torch.load(model_dir)
    model.load_state_dict(checkpoint)

3. how to test

Revise the test file name in predict.py and then run the below command:

python3 predict.py
Owner
i am x
i am x
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022