Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

Overview

PyPI version GitHub Issues Contributions welcome License: MIT Downloads

EasyMCDM - Quick Installation methods

Install with PyPI

Once you have created your Python environment (Python 3.6+) you can simply type:

pip3 install EasyMCDM

Install with GitHub

Once you have created your Python environment (Python 3.6+) you can simply type:

git clone https://github.com/qanastek/EasyMCDM.git
cd EasyMCDM
pip3 install -r requirements.txt
pip3 install --editable .

Any modification made to the EasyMCDM package will be automatically interpreted as we installed it with the --editable flag.

Setup with Anaconda

conda create --name EasyMCDM python=3.6 -y
conda activate EasyMCDM

More information on managing environments with Anaconda can be found in the conda cheat sheet.

Try It

Data in tests/data/donnees.csv :

alfa_156,23817,201,8,39.6,6,378,31.2
audi_a4,25771,195,5.7,35.8,7,440,33
cit_xantia,25496,195,7.9,37,2,480,34

Promethee

from EasyMCDM.models.Promethee import Promethee

data = pd.read_csv('tests/data/donnees.csv', header=None).to_numpy()
# or
data = {
  "alfa_156": [23817.0, 201.0, 8.0, 39.6, 6.0, 378.0, 31.2],
  "audi_a4": [25771.0, 195.0, 5.7, 35.8, 7.0, 440.0, 33.0],
  "cit_xantia": [25496.0, 195.0, 7.9, 37.0, 2.0, 480.0, 34.0]
}
weights = [0.14,0.14,0.14,0.14,0.14,0.14,0.14]
prefs = ["min","max","min","min","min","max","min"]

p = Promethee(data=data, verbose=False)
res = p.solve(weights=weights, prefs=prefs)
print(res)

Output :

{
  'phi_negative': [('rnlt_safrane', 2.381), ('vw_passat', 2.9404), ('bmw_320d', 3.3603), ('saab_tid', 3.921), ('audi_a4', 4.34), ('cit_xantia', 4.48), ('rnlt_laguna', 5.04), ('alfa_156', 5.32), ('peugeot_406', 5.461), ('cit_xsara', 5.741)],
  'phi_positive': [('rnlt_safrane', 6.301), ('vw_passat', 5.462), ('bmw_320d', 5.18), ('saab_tid', 4.76), ('audi_a4', 4.0605), ('cit_xantia', 3.921), ('rnlt_laguna', 3.6406), ('alfa_156', 3.501), ('peugeot_406', 3.08), ('cit_xsara', 3.08)],
  'phi': [('rnlt_safrane', 3.92), ('vw_passat', 2.5214), ('bmw_320d', 1.8194), ('saab_tid', 0.839), ('audi_a4', -0.27936), ('cit_xantia', -0.5596), ('rnlt_laguna', -1.3995), ('alfa_156', -1.8194), ('peugeot_406', -2.381), ('cit_xsara', -2.661)],
  'matrix': '...'
}

Electre Iv / Is

from EasyMCDM.models.Electre import Electre

data = {
    "A1" : [80, 90,  600, 5.4,  8,  5],
    "A2" : [65, 58,  200, 9.7,  1,  1],
    "A3" : [83, 60,  400, 7.2,  4,  7],
    "A4" : [40, 80, 1000, 7.5,  7, 10],
    "A5" : [52, 72,  600, 2.0,  3,  8],
    "A6" : [94, 96,  700, 3.6,  5,  6],
}
weights = [0.1, 0.2, 0.2, 0.1, 0.2, 0.2]
prefs = ["min", "max", "min", "min", "min", "max"]
vetoes = [45, 29, 550, 6, 4.5, 4.5]
indifference_threshold = 0.6
preference_thresholds = [20, 10, 200, 4, 2, 2] # or None for Electre Iv

e = Electre(data=data, verbose=False)

results = e.solve(weights, prefs, vetoes, indifference_threshold, preference_thresholds)

Output :

{'kernels': ['A4', 'A5']}

Pareto

from EasyMCDM.models.Pareto import Pareto

data = 'tests/data/donnees.csv'
# or
data = {
  "alfa_156": [23817.0, 201.0, 8.0, 39.6, 6.0, 378.0, 31.2],
  "audi_a4": [25771.0, 195.0, 5.7, 35.8, 7.0, 440.0, 33.0],
  "cit_xantia": [25496.0, 195.0, 7.9, 37.0, 2.0, 480.0, 34.0]
}

p = Pareto(data=data, verbose=False)
res = p.solve(indexes=[0,1,6], prefs=["min","max","min"])
print(res)

Output :

{
  'alfa_156': {'Weakly-dominated-by': [], 'Dominated-by': []},
  'audi_a4': {'Weakly-dominated-by': ['alfa_156'], 'Dominated-by': ['alfa_156']}, 
  'cit_xantia': {'Weakly-dominated-by': ['alfa_156', 'vw_passat'], 'Dominated-by': ['alfa_156']},
  'peugeot_406': {'Weakly-dominated-by': ['alfa_156', 'cit_xantia', 'rnlt_laguna', 'vw_passat'], 'Dominated-by': ['alfa_156', 'cit_xantia', 'rnlt_laguna', 'vw_passat']},
  'saab_tid': {'Weakly-dominated-by': ['alfa_156'], 'Dominated-by': ['alfa_156']}, 
  'rnlt_laguna': {'Weakly-dominated-by': ['vw_passat'], 'Dominated-by': ['vw_passat']}, 
  'vw_passat': {'Weakly-dominated-by': [], 'Dominated-by': []},
  'bmw_320d': {'Weakly-dominated-by': [], 'Dominated-by': []},
  'cit_xsara': {'Weakly-dominated-by': [], 'Dominated-by': []},
  'rnlt_safrane': {'Weakly-dominated-by': ['bmw_320d'], 'Dominated-by': ['bmw_320d']}
}

Weighted Sum

from EasyMCDM.models.WeightedSum import WeightedSum

data = 'tests/data/donnees.csv'
# or
data = {
  "alfa_156": [23817.0, 201.0, 8.0, 39.6, 6.0, 378.0, 31.2],
  "audi_a4": [25771.0, 195.0, 5.7, 35.8, 7.0, 440.0, 33.0],
  "cit_xantia": [25496.0, 195.0, 7.9, 37.0, 2.0, 480.0, 34.0]
}

p = WeightedSum(data=data, verbose=False)
res = p.solve(pref_indexes=[0,1,6],prefs=["min","max","min"], weights=[0.001,2,3], target='min')
print(res)

Output :

[(1, 'bmw_320d', -299.04), (2, 'alfa_156', -284.58299999999997), (3, 'rnlt_safrane', -280.84), (4, 'saab_tid', -275.817), (5, 'vw_passat', -265.856), (6, 'audi_a4', -265.229), (7, 'rnlt_laguna', -262.93600000000004), (8, 'cit_xantia', -262.504), (9, 'peugeot_406', -252.551), (10, 'cit_xsara', -244.416)]

Instant-Runoff Multicriteria Optimization (IRMO)

Short description : Eliminate the worst individual for each criteria, until we reach the last one and select the best one.

from EasyMCDM.models.Irmo import Irmo

p = Irmo(data="data/donnees.csv", verbose=False)
res = p.solve(
    indexes=[0,1,4,5], # price -> max_speed -> comfort -> trunk_space
    prefs=["min","max","min","max"]
)
print(res)

Output :

{'best': 'saab_tid'}

List of methods available

Build PyPi package

Build: python setup.py sdist bdist_wheel

Upload: twine upload dist/*

Citation

If you want to cite the tool you can use this:

@misc{EasyMCDM,
  title={EasyMCDM},
  author={Yanis Labrak, Quentin Raymondaud, Philippe Turcotte},
  publisher={GitHub},
  journal={GitHub repository},
  howpublished={\url{https://github.com/qanastek/EasyMCDM}},
  year={2022}
}
Owner
Labrak Yanis
👨🏻‍🎓 Student in Master of Science in Computer Science, Avignon University 🇫🇷 🏛 Research Scientist - Machine Learning in Healthcare
Labrak Yanis
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022