Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

Overview

marge

This repository releases the code for Generating Query Focused Summaries from Query-Free Resources.

Please cite the following paper [bib] if you use this code,

Xu, Yumo, and Mirella Lapata. "Generating Query Focused Summaries from Query-Free Resources." In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6096–6109. 2021.

The availability of large-scale datasets has driven the development of neural models that create generic summaries from single or multiple documents. In this work we consider query focused summarization (QFS), a task for which training data in the form of queries, documents, and summaries is not readily available. We propose to decompose QFS into (1) query modeling (i.e., finding supportive evidence within a set of documents for a query) and (2) conditional language modeling (i.e., summary generation). We introduce MaRGE, a Masked ROUGE Regression framework for evidence estimation and ranking which relies on a unified representation for summaries and queries, so that summaries in generic data can be converted into proxy queries for learning a query model. Experiments across QFS benchmarks and query types show that our model achieves state-of-the-art performance despite learning from weak supervision.

Should you have any query please contact me at [email protected].

Preliminary setup

Project structure

marge
└───requirements.txt
└───README.md
└───log        # logging files
└───run        # scripts for MaRGE training
└───src        # source files
└───data       # generic data for training; qfs data for test/dev
└───graph      # graph components for query expansion
└───model      # MaRGE models for inference
└───rank       # ranking results
└───text       # summarization results
└───unilm_in   # input files to UniLM
└───unilm_out  # output files from UniLM

After cloning this project, use the following command to initialize the structure:

mkdir log data graph model rank text unilm_in unilm_out

Creating environment

cd ..
virtualenv -p python3.6 marge
cd marge
. bin/activate
pip install -r requirements.txt

You need to install apex:

cd ..
git clone https://www.github.com/nvidia/apex
cd apex
python3 setup.py install

Also, you need to setup ROUGE evaluation if you have not yet done it. Please refer to this repository. After finishing the setup, specify the ROUGE path in frame/utils/config_loader.py as an attribute of PathParser:

self.rouge_dir = '~/ROUGE-1.5.5/data'  # specify your ROUGE dir

Preparing benchmark data

Since we are not allowed to distribute DUC clusters and summaries, you can request DUC 2005-2007 from NIST. After acquiring the data, gather each year's clusters and summaries under data/duc_cluster and data/duc_summary, respectively. For instance, DUC 2006's clusters and summaries should be found under data/duc_cluster/2006/ and data/duc_summary/2006/, respectively. For DUC queries: you don't have to prepare queries by yourself; we have put 3 json files for DUC 2005-2007 under data/masked_query, which contain a raw query and a masked query for each cluster. Queries will be fetched from these files at test time.

TD-QFS data can be downloaded from here. You can also use the processed version here.

After data preparation, you should have the following directory structure with the right files under each folder:

marge
└───data
│   └───duc_clusters   # DUC clusters 
│   └───duc_summaries  # DUC reference summaries 
│   └───masked_query   # DUC queries (raw and masked)
│   └───tdqfs          # TD-QFS clusters, queries and reference summaries

MaRGE: query modeling

Preparing training data

Source files for building training data are under src/sripts. For each dataset (Multi-News or CNN/DM), there are three steps create MaRGE training data.

A training sample for Marge can be represented as {sentence, masked summary}->ROUGE(sentence, summary). So we need to get the ROUGE scores for all sentences (step 1) and creating masked summaries (step 2). Then we put them together (step 3).

  1. Calculate ROUGE scores for all sentences:
python src/sripts/dump_sentence_rouge_mp.py
  1. Build masked summaries:
python src/sripts/mask_summary_with_ratio.py
  1. Build train/val/test datasets:
python src/sripts/build_marge_dataset_mn.py

In our experiments, Marge trained on data from Multi-News yielded the best performance in query modeling. If you want to build training data from CNN/DM:

  1. Use the function gathered_mp_dump_sentence_cnndm() in the first step (otherwise, use the function gathered_mp_dump_sentence_mn() )
  2. Set dataset='cnndm' in the second step (otherwise, dataset='mn')
  3. Use build_marge_dataset_cnndm.py instead for the last step

Model training

Depending on which training data you have built, you can run either one of the following two scripts:

. ./run/run_rr_cnndm.sh   # train MaRGE with data from CNN/DM
. ./run/run_rr_mn.sh  # train MaRGE with data from Multi-News

Configs specified in these two files are used in our experiments, but feel free to change them for further experimentation.

Inference and evaluation

Use src/frame/rr/main.py for DUC evaluation and src/frame/rr/main_tdqfs.py for TD-QFS evalaution. We will take DUC evaluation for example.

In src/frame/rr/main.py, run the following methods in order (or at once):

init()
dump_rel_scores()  # inference with MaRGE
rel_scores2rank()  # turn sentence scores to sentence rank
rr_rank2records()  # take top sentences

To evaluate evidence rank, in src/frame/rr/main.py, run:

select_e2e()

MaRGESum: summary generation

Prepare training data from Multi-News

To train a controllable generator, we make the following three changes to the input from Multi-News (and CNN/DM):

  1. Re-order input sentences according to their ROUGE scores, so the top ones will be biased over:
python scripts/selector_for_train.py
  1. Prepend a summary-length token
  2. Prepend a masked summary (UMR-S)

Prepare training data from CNN/DM

Our best generation result is obtained with CNN/DM data. To train MargeSum on CNN/DM data, apart from the above-mentioned three customizations, we need an extra step: build a multi-document version of CNN/DM.

This is mainly because the summaries in the original CNN/DM are fairly short, while testing on QFS requires 250 words as output. To fix this issue, we concatenate summaries from a couple of relevant samples to get a long enough summary. Therefore, the input is now a cluster of the documents from these relevant samples.

This involves in Dr.QA to index all summaries in CNN/DM. After indexing, you can use the following script to cluster samples via retrieving similar summaries:

python scripts/build_cnndm_clusters.py
  • upload the training data, so you can use this multi-document CNN/DM without making it from scratch.

Inference and evaluation

Setting up UniLM environment

To evaluate abstractive summarization, you need to setup an UniLM evironment following the instructions here.

After setting up UnILM, in src/frame/rr/main.py, run:

build_unilm_input(src='rank')

This turns ranked evidence from Marge into MargeSum input files.

Now You can evaluate the trained UniLM model for developement and testing. Go to the UniLM project root, set the correct input directory, and deocode the summaries.

  • add detailed documentation for setting up UniLM.
  • add detailed documentation for decoding.

To evaluate the output, use the following function in src/frame/rr/main.py:

eval_unilm_out()

You can specifiy inference configs in src/frame/rr/rr_config.py.

Owner
Yumo Xu
PhD student @EdinburghNLP.
Yumo Xu
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022