Iterative Normalization: Beyond Standardization towards Efficient Whitening

Related tags

Deep LearningIterNorm
Overview

IterNorm

Code for reproducing the results in the following paper:

Iterative Normalization: Beyond Standardization towards Efficient Whitening

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, Ling Shao

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. arXiv:1904.03441

This is the torch implementation (results of experimetns are based on this implementation). Other implementation are shown as follows:

1. Pytorch re-implementation

2. Tensorflow implementation by Lei Zhao.

=======================================================================

Requirements and Dependency

  • Install Torch with CUDA (for GPU).
  • Install cudnn.
  • Install the dependency optnet by:
luarocks install optnet

Experiments

1. Reproduce the results of VGG-network on Cifar-10 datasets:

Prepare the data: download CIFAR-10 , and put the data files under ./data/.

  • Run:
bash y_execute_vggE_base.sh               //basic configuration
bash y_execute_vggE_b1024.sh              //batch size of 1024
bash y_execute_vggE_b16.sh                //batch size of 16
bash y_execute_vggE_LargeLR.sh            //10x larger learning rate
bash y_execute_vggE_IterNorm_Iter.sh      //effect of iteration number
bash y_execute_vggE_IterNorm_Group.sh     //effect of group size

Note that the scripts don't inculde the setups of Decorrelated Batch Noarmalizaiton (DBN). To reproduce the results of DBN please follow the instructions of the DBN project, and the corresponding hyper-parameters described in the paper.

2. Reproduce the results of Wide-Residual-Networks on Cifar-10 datasets:

Prepare the data: same as in VGG-network on Cifar-10 experiments.

  • Run:
bash y_execute_wr.sh               

3. Reproduce the ImageNet experiments.

  • Download ImageNet and put it in: /data/lei/imageNet/input_torch/ (you can also customize the path in opts_imageNet.lua)
  • Install the IterNorm module to Torch as a Lua package: go to the directory ./models/imagenet/cuSpatialDBN/ and run luarocks make cudbn-1.0-0.rockspec. (Note that the modules in ./models/imagenet/cuSpatialDBN/ are the same as in the ./module/, and the installation by luarocks is for convinience in training ImageNet with multithreads.)
  • run the script with `z_execute_imageNet_***'

This project is based on the training scripts of Wide Residual Network repo and Facebook's ResNet repo.

Contact

Email: [email protected].. Discussions and suggestions are welcome!

Owner
Lei Huang
Associate professor in BeiHang University, research interest: deep learning, semi-supervised learning, active learning and their application to visual dada
Lei Huang
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021