lightweight python wrapper for vowpal wabbit

Overview

vowpal_porpoise

Lightweight python wrapper for vowpal_wabbit.

Why: Scalable, blazingly fast machine learning.

Install

  1. Install vowpal_wabbit. Clone and run make
  2. Install cython. pip install cython
  3. Clone vowpal_porpoise
  4. Run: python setup.py install to install.

Now can you do: import vowpal_porpoise from python.

Examples

Standard Interface

Linear regression with l1 penalty:

from vowpal_porpoise import VW

# Initialize the model
vw = VW(moniker='test',    # a name for the model
        passes=10,         # vw arg: passes
        loss='quadratic',  # vw arg: loss
        learning_rate=10,  # vw arg: learning_rate
        l1=0.01)           # vw arg: l1

# Inside the with training() block a vw process will be 
# open to communication
with vw.training():
    for instance in ['1 |big red square',\
                      '0 |small blue circle']:
        vw.push_instance(instance)

    # here stdin will close
# here the vw process will have finished

# Inside the with predicting() block we can stream instances and 
# acquire their labels
with vw.predicting():
    for instance in ['1 |large burnt sienna rhombus',\
                      '0 |little teal oval']:
        vw.push_instance(instance)

# Read the predictions like this:
predictions = list(vw.read_predictions_())

L-BFGS with a rank-5 approximation:

from vowpal_porpoise import VW

# Initialize the model
vw = VW(moniker='test_lbfgs', # a name for the model
        passes=10,            # vw arg: passes
        lbfgs=True,           # turn on lbfgs
        mem=5)                # lbfgs rank

Latent Dirichlet Allocation with 100 topics:

from vowpal_porpoise import VW

# Initialize the model
vw = VW(moniker='test_lda',  # a name for the model
        passes=10,           # vw arg: passes
        lda=100,             # turn on lda
        minibatch=100)       # set the minibatch size

Scikit-learn Interface

vowpal_porpoise also ships with an interface into scikit-learn, which allows awesome experiment-level stuff like cross-validation:

from sklearn.cross_validation import StratifiedKFold
from sklearn.grid_search import GridSearchCV
from vowpal_porpoise.sklearn import VW_Classifier

GridSearchCV(
        VW_Classifier(loss='logistic', moniker='example_sklearn',
                      passes=10, silent=True, learning_rate=10),
        param_grid=parameters,
        score_func=f1_score,
        cv=StratifiedKFold(y_train),
).fit(X_train, y_train)

Check out example_sklearn.py for more details

Library Interace (DISABLED as of 2013-08-12)

Via the VW interface:

with vw.predicting_library():
    for instance in ['1 |large burnt sienna rhombus', \
                      '1 |little teal oval']:
        prediction = vw.push_instance(instance)

Now the predictions are returned directly to the parent process, rather than having to read from disk. See examples/example1.py for more details.

Alternatively you can use the raw library interface:

import vw_c
vw = vw_c.VW("--loss=quadratic --l1=0.01 -f model")
vw.learn("1 |this is a positive example")
vw.learn("0 |this is a negative example")
vw.finish()

Currently does not support passes due to some limitations in the underlying vw C code.

Need more examples?

  • example1.py: SimpleModel class wrapper around VP (both standard and library flavors)
  • example_library.py: Demonstrates the low-level vw library wrapper, classifying lines of alice in wonderland vs through the looking glass.

Why

vowpal_wabbit is insanely fast and scalable. vowpal_porpoise is slower, but only during the initial training pass. Once the data has been properly cached it will idle while vowpal_wabbit does all the heavy lifting. Furthermore, vowpal_porpoise was designed to be lightweight and not to get in the way of vowpal_wabbit's scalability, e.g. it allows distributed learning via --nodes and does not require data to be batched in memory. In our research work we use vowpal_porpoise on an 80-node cluster running over multiple terabytes of data.

The main benefit of vowpal_porpoise is allowing rapid prototyping of new models and feature extractors. We found that we had been doing this in an ad-hoc way using python scripts to shuffle around massive gzipped text files, so we just closed the loop and made vowpal_wabbit a python library.

How it works

Wraps the vw binary in a subprocess and uses stdin to push data, temporary files to pull predictions. Why not use the prediction labels vw provides on stdout? It turns out that the python GIL basically makes streamining in and out of a process (even asynchronously) painfully difficult. If you know of a clever way to get around this, please email me. In other languages (e.g. in a forthcoming scala wrapper) this is not an issue.

Alternatively, you can use a pure api call (vw_c, wrapping libvw) for prediction.

Contact

Joseph Reisinger @josephreisinger

Contributors

License

Apache 2.0

Comments
  • Issue with example1.py

    Issue with example1.py

    Hi, guys!

    When I run example1.py it raises exeception. """ [email protected]:~/vowpal_porpoise/examples$ python example1.py example1: training [DEBUG] No existing model file or not options.incremental [DEBUG] Running command: "vw --learning_rate=15.000000 --power_t=1.000000 --passes 10 --cache_file /home/kolesman/vowpal_porpoise/examples/example1.cache -f /home/kolesman/vowpal_porpoise/examples/example1.model" done streaming. final_regressor = /home/kolesman/vowpal_porpoise/examples/example1.model Num weight bits = 18 learning rate = 15 initial_t = 0 power_t = 1 decay_learning_rate = 1 creating cache_file = /home/kolesman/vowpal_porpoise/examples/example1.cache Reading datafile = num sources = 1 average since example example current current current loss last counter weight label predict features 0.360904 0.360904 3 3.0 1.0000 0.7933 5 0.266263 0.171622 6 6.0 0.0000 0.2465 5 -nan -nan 11 11.0 0.0000 0.0000 5 h -nan -nan 22 22.0 0.0000 0.0000 5 h -nan -nan 44 44.0 1.0000 1.0000 5 h Traceback (most recent call last): File "example1.py", line 86, in for (instance, prediction) in SimpleModel('example1').train(instances).predict(instances): File "example1.py", line 44, in train print 'done streaming.' File "/usr/lib/python2.7/contextlib.py", line 24, in exit self.gen.next() File "/usr/local/lib/python2.7/dist-packages/vowpal_porpoise-0.3-py2.7.egg/vowpal_porpoise/vw.py", line 167, in training self.close_process() File "/usr/local/lib/python2.7/dist-packages/vowpal_porpoise-0.3-py2.7.egg/vowpal_porpoise/vw.py", line 203, in close_process (self.vw_process.pid, self.vw_process.command, self.vw_process.returncode)) Exception: vw_process 22007 (vw --learning_rate=15.000000 --power_t=1.000000 --passes 10 --cache_file /home/kolesman/vowpal_porpoise/examples/example1.cache -f /home/kolesman/vowpal_porpoise/examples/example1.model) exited abnormally with return code -11 """

    Do you have any ideas what is the source of problem?

    opened by kolesman 2
  • Make tagged VW data work

    Make tagged VW data work

    For whatever reason, when the VW data is tagged, the parser barfs on reading the prediction file because it gets the prediction value and the tag back. This fixes it for me.

    opened by mswimmer 1
  • Added support for nn (single layer) in sklearn interface

    Added support for nn (single layer) in sklearn interface

    Adding support for nn to be called from the wrapper.

    [DEBUG] Running command: "vw --learning_rate=5.000000 --l2=0.000010 --oaa=10 --nn=4 --passes 10 --cache_file /home/vvkulkarni/vowpal_porpoise/examples/example_sklearn.cache -f /home/vvkulkarni/vowpal_porpoise/examples/example_sklearn.model" [DEBUG] Running command: "vw --learning_rate=5.000000 --l2=0.000010 --oaa=10 --nn=4 -t -i /home/vvkulkarni/vowpal_porpoise/examples/example_sklearn.model -p /home/vvkulkarni/vowpal_porpoise/examples/example_sklearn.predictionecqcFA" Confusion Matrix: [[34 0 0 0 1 0 0 0 0 0] [ 0 29 0 0 0 0 0 0 0 7] [ 0 0 35 0 0 0 0 0 0 0] [ 0 0 0 24 0 4 0 3 6 0] [ 0 0 0 0 34 0 0 0 3 0] [ 0 0 0 0 0 37 0 0 0 0] [ 0 0 0 0 0 0 37 0 0 0] [ 0 0 0 1 0 0 0 32 2 1] [ 0 1 0 0 0 1 0 1 30 0] [ 0 0 0 0 0 2 0 1 3 31]] 0.89717036724 Adding @aboSamoor (as he is interested in this CL too)

    opened by viveksck 1
  • Encode Cython as a setup-time dependency of vowpal porpoise

    Encode Cython as a setup-time dependency of vowpal porpoise

    Encoding Cython as a setup-time dependency makes it much easer to use vowpal porpoise in nicely packaged distributions.

    Without Cython as a setup-time dependency, you might have a requirements.txt with these lines: Cython git+http://github.com/josephreisinger/vowpal_porpoise.git#egg=vowpal_porpoise and try to execute "pip install -r requirements.txt" (or, for instance, push to Heroku and expect it to do so).

    Unfortunately the installation process for Cython will not be completed before vowpal porpoise needs it. By specifying Cython as a setup-time dependency in the vowpal porpoise setup.py, Cython will be downloaded and available before it is needed, and you don't have to specify it as a dependency elsewhere. Using my modified setup.py, I can now run "pip install git+http://github.com/josephreisinger/vowpal_porpoise.git#egg=vowpal_porpoise" without any mention of Cython.

    opened by mattbornski 0
  • Update example_sklearn.py

    Update example_sklearn.py

    y must be a binary list, otherwise will result in an error:

    [DEBUG] No existing model file or not options.incremental
    [DEBUG] Running command: "vw --learning_rate=10.000000 --l2=0.000010 --loss_function=logistic --passes 10 --cache_file /Users/datle/Desktop/example_sklearn.cache -f /Users/datle/Desktop/example_sklearn.model"
    [DEBUG] Running command: "vw --learning_rate=10.000000 --l2=0.000010 --loss_function=logistic -t -i /Users/datle/Desktop/example_sklearn.model -p /Users/datle/Desktop/example_sklearn.predictiond9d1DV"
    Traceback (most recent call last):
      File "test.py", line 72, in <module>
        main()
      File "test.py", line 58, in main
        ).fit(X_train, y_train)
      File "/Library/Python/2.7/site-packages/sklearn/grid_search.py", line 732, in fit
        return self._fit(X, y, ParameterGrid(self.param_grid))
      File "/Library/Python/2.7/site-packages/sklearn/grid_search.py", line 505, in _fit
        for parameters in parameter_iterable
      File "/Library/Python/2.7/site-packages/sklearn/externals/joblib/parallel.py", line 659, in __call__
        self.dispatch(function, args, kwargs)
      File "/Library/Python/2.7/site-packages/sklearn/externals/joblib/parallel.py", line 406, in dispatch
        job = ImmediateApply(func, args, kwargs)
      File "/Library/Python/2.7/site-packages/sklearn/externals/joblib/parallel.py", line 140, in __init__
        self.results = func(*args, **kwargs)
      File "/Library/Python/2.7/site-packages/sklearn/cross_validation.py", line 1478, in _fit_and_score
        test_score = _score(estimator, X_test, y_test, scorer)
      File "/Library/Python/2.7/site-packages/sklearn/cross_validation.py", line 1534, in _score
        score = scorer(estimator, X_test, y_test)
      File "/Library/Python/2.7/site-packages/sklearn/metrics/scorer.py", line 201, in _passthrough_scorer
        return estimator.score(*args, **kwargs)
      File "/Library/Python/2.7/site-packages/sklearn/base.py", line 295, in score
        return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
      File "/Library/Python/2.7/site-packages/sklearn/metrics/classification.py", line 179, in accuracy_score
        y_type, y_true, y_pred = _check_targets(y_true, y_pred)
      File "/Library/Python/2.7/site-packages/sklearn/metrics/classification.py", line 84, in _check_targets
        "".format(type_true, type_pred))
    ValueError: Can't handle mix of binary and continuous
    
    opened by lenguyenthedat 0
  • Can't run example 1

    Can't run example 1

    Hi If I try to run example1 after installing everything, I get the following error:

    File "example1.py", line 86, in <module>
        for (instance, prediction) in SimpleModel('example1').train(instances).predict(instances):
      File "example1.py", line 37, in train
        with self.model.training():
      File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/contextlib.py", line 17, in __enter__
        return self.gen.next()
      File "build/bdist.macosx-10.9-intel/egg/vowpal_porpoise/vw.py", line 168, in training
      File "build/bdist.macosx-10.9-intel/egg/vowpal_porpoise/vw.py", line 194, in start_training
      File "build/bdist.macosx-10.9-intel/egg/vowpal_porpoise/vw.py", line 266, in make_subprocess
      File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/subprocess.py", line 711, in __init__
        errread, errwrite)
      File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/subprocess.py", line 1308, in _execute_child
        raise child_exception
    OSError: [Errno 2] No such file or directory
    

    I'd hazard a guess the cache file is not getting created. Please help?

    opened by Kaydeeb0y 0
  • Doesn't work on ipython notebook

    Doesn't work on ipython notebook

    I'm trying to use vowpal porpoise from my Ipython Notebook web interface Running this code:

    from vowpal_porpoise import VW
    vw = VW(vw='vw_new', 
       passes=2,
       moniker='log_train.vw', 
       loss='logistic')
    with vw.training():
        pass
    

    I get this:

    ---------------------------------------------------------------------------
    UnsupportedOperation                      Traceback (most recent call last)
    <ipython-input-7-39be08ecca54> in <module>()
          3    moniker='log_train.vw',
          4    loss='logistic')
    ----> 5 with vw.training():
          6     pass
    
    /usr/lib/python2.7/contextlib.pyc in __enter__(self)
         15     def __enter__(self):
         16         try:
    ---> 17             return self.gen.next()
         18         except StopIteration:
         19             raise RuntimeError("generator didn't yield")
    
    /usr/local/lib/python2.7/dist-packages/vowpal_porpoise-0.3-py2.7.egg/vowpal_porpoise/vw.pyc in training(self)
        166     @contextmanager
        167     def training(self):
    --> 168         self.start_training()
        169         yield
        170         self.close_process()
    
    /usr/local/lib/python2.7/dist-packages/vowpal_porpoise-0.3-py2.7.egg/vowpal_porpoise/vw.pyc in start_training(self)
        192 
        193         # Run the actual training
    --> 194         self.vw_process = self.make_subprocess(self.vw_train_command(cache_file, model_file))
        195 
        196         # set the instance pusher
    
    /usr/local/lib/python2.7/dist-packages/vowpal_porpoise-0.3-py2.7.egg/vowpal_porpoise/vw.pyc in make_subprocess(self, command)
        264             stderr.write(command + '\n')
        265         self.log.debug('Running command: "%s"' % str(command))
    --> 266         result = subprocess.Popen(shlex.split(str(command)), stdin=subprocess.PIPE, stdout=stdout, stderr=stderr, close_fds=True, universal_newlines=True)
        267         result.command = command
        268         return result
    
    /usr/lib/python2.7/subprocess.pyc in __init__(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags)
        670         (p2cread, p2cwrite,
        671          c2pread, c2pwrite,
    --> 672          errread, errwrite) = self._get_handles(stdin, stdout, stderr)
        673 
        674         self._execute_child(args, executable, preexec_fn, close_fds,
    
    /usr/lib/python2.7/subprocess.pyc in _get_handles(self, stdin, stdout, stderr)
       1063             else:
       1064                 # Assuming file-like object
    -> 1065                 errwrite = stderr.fileno()
       1066 
       1067             return (p2cread, p2cwrite,
    
    /usr/local/lib/python2.7/dist-packages/IPython/kernel/zmq/iostream.pyc in fileno(self)
        192 
        193     def fileno(self):
    --> 194         raise UnsupportedOperation("IOStream has no fileno.")
        195 
        196     def write(self, string):
    
    UnsupportedOperation: IOStream has no fileno.
    
    
    opened by khalman-m 0
  • Make input format for cross validation consistent with that of VW

    Make input format for cross validation consistent with that of VW

    First of all, this is a great wrapper! It was very nice to see the linear regression with l1 penalty example take input in the VW format. However, it would be great for beginners like me to have a similar example for getting the GridSearch to work with VW.

    opened by Legend 0
  • GridSearchCV with n_jobs > 1 (Parallelized) with VW classfier results in a Broken Pipe error

    GridSearchCV with n_jobs > 1 (Parallelized) with VW classfier results in a Broken Pipe error

    127         with self.vw_.training():
    128             for instance in examples:
    129                 self.vw_.push_instance(instance) <-----
    130 
    131         # learning done after "with" statement
    132         return self
    133 
    

    ........................................................................... /usr/local/lib/python2.7/dist-packages/vowpal_porpoise-0.3-py2.7.egg/vowpal_porpoise/vw.pyc in push_instance_stdin(self=<vowpal_porpoise.vw.VW instance>, instance='2 | 42:2.000000 29:16.000000 60:13.000000 61:16....3:16.000000 52:16.000000 33:7.000000 37:16.000000') 204 if self.vw_process.wait() != 0: 205 raise Exception("vw_process %d (%s) exited abnormally with return code %d" %
    206 (self.vw_process.pid, self.vw_process.command, self.vw_process.returncode)) 207 208 def push_instance_stdin(self, instance): --> 209 self.vw_process.stdin.write(('%s\n' % instance).encode('utf8')) 210 211 def start_predicting(self): 212 model_file = self.get_model_file() 213 # Be sure that the prediction file has a unique filename, since many processes may try to

    IOError: [Errno 32] Broken pipe

    To reproduce: Just pass the parameter n_jobs = 10 to GridSearchCV in example_sklearn.py

    opened by viveksck 0
Releases(0.3)
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021