In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Overview

Contrastive Learning of Object Representations

Supervisor:

Institutions:

Project Description

Contrastive Learning is an unsupervised method for learning similarities or differences in a dataset, without the need of labels. The main idea is to provide the machine with similar (so called positive samples) and with very different data (negative or corrupted samples). The task of the machine then is to leverage this information and to pull the positive examples in the embedded space together, while pushing the negative examples further apart. Next to being unsupervised, another major advantage is that the loss is applied on the latent space rather than being pixel-base. This saves computation and memory, because there is no need for a decoder and also delivers more accurate results.

eval_3_obj

In this work, we will investigate the SetCon model from 'Learning Object-Centric Video Models by Contrasting Sets' by Löwe et al. [1] (Paper) The SetCon model has been published in November 2020 by the Google Brain Team and introduces an attention-based object extraction in combination with contrastive learning. It incorporates a novel slot-attention module [2](Paper), which is an iterative attention mechanism to map the feature maps from the CNN-Encoder to a predefined number of object slots and has been inspired by the transformer models from the NLP world.

We investigate the utility of this architecture when used together with realistic video footage. Therefore, we implemented the SetCon with PyTorch according to its description and build upon it to meet our requirements. We then created two different datasets, in which we film given objects from different angles and distances, similar to Pirk [3] (Github, Paper). However, they relied on a faster-RCNN for the object detection, whereas the goal of the SetCon is to extract the objects solely by leveraging the contrastive loss and the slot attention module. By training a decoder on top of the learned representations, we found that in many cases the model can successfully extract objects from a scene.

This repository contains our PyTorch-implementation of the SetCon-Model from 'Learning Object-Centric Video Models by Contrasting Sets' by Löwe et al. Implementation is based on the description in the article. Note, this is not the official implementation. If you have questions, feel free to reach out to me.

Results

For our work, we have taken two videos, a Three-Object video and a Seven-Object video. In these videos we interacted with the given objects and moved them to different places and constantly changed the view perspective. Both are 30mins long, such that each contains about 54.000 frames.

eval_3_obj
Figure 1: An example of the object extraction on the test set of the Three-Object dataset.

We trained the contrastive pretext model (SetCon) on the first 80% and then evaluated the learned representations on the remaining 20%. Therefore, we trained a decoder, similar to the evaluation within the SetCon paper and looked into the specialisation of each slot. Figures 1 and 2 display two evaluation examples, from the test-set of the Three-Object Dataset and the Seven-Object Dataset. Bot figures start with the ground truth for three timestamps. During evaluation only the ground truth at t will be used to obtain the reconstructed object slots as well as their alpha masks. The Seven-Object video is itended to be more complex and one can perceive in figure 2 that the model struggles more than on the Three-Obejct dataset to route the objects to slots. On the Three-Object dataset, we achieved 0.0043 ± 0.0029 MSE and on the Seven-Object dataset 0.0154 ± 0.0043 MSE.

eval_7_obj
Figure 2: An example of the object extraction on the test set of the Seven-Object dataset.

How to use

For our work, we have taken two videos, a Three-Object video and Seven-Object video. Both datasets are saved as frames and are then encoded in a h5-files. To use a different dataset, we further provide a python routine process frames.py, which converts frames to h5 files.

For the contrastive pretext-task, the training can be started by:

python3 train_pretext.py --end 300000 --num-slots 7
        --name pretext_model_1 --batch-size 512
        --hidden-dim=1024 --learning-rate 1e-5
        --feature-dim 512 --data-path ’path/to/h5file’

Further arguments, like the size of the encoder or for an augmentation pipeline, use the flag -h for help. Afterwards, we froze the weights from the encoder and the slot-attention-module and trained a downstream decoder on top of it. The following command will train the decoder upon the checkpoint file from the pretext task:

python3 train_decoder.py --end 250000 --num-slots 7
        --name downstream_model_1 --batch-size 64
        --hidden-dim=1024 --feature-dim 512
        --data-path ’path/to/h5file’
        --pretext-path "path/to/pretext.pth.tar"
        --learning-rate 1e-5

For MSE evaluation on the test-set, use both checkpoints, from the pretext- model for the encoder- and slot-attention-weights and from the downstream- model for the decoder-weights and run:

python3 eval.py --num-slots 7 --name evaluation_1
        --batch-size 64 --hidden-dim=1024
        --feature-dim 512 --data-path ’path/to/h5file’
        --pretext-path "path/to/pretext.pth.tar"
        --decoder-path "path/to/decoder.pth.tar"

Implementation Adjustments

Instead of many small sequences of artificially created frames, we need to deal with a long video-sequence. Therefore, each element in our batch mirrors a single frame at a given time t, not a sequence. For this single frame at time t, we load its two predecessors, which are then used to predict the frame at t, and thereby create a positive example. Further, we found, that the infoNCE-loss to be numerically unstable in our case, hence we opted for the almost identical but more stable NT-Xent in our implementation.

References

[1] Löwe, Sindy et al. (2020). Learning object-centric video models by contrasting sets. Google Brain team.

[2] Locatello, Francesco et al. Object-centric learning with slot attention.

[3] Pirk, Sören et al. (2019). Online object representations with contrastive learning. Google Brain team.

Owner
Dirk Neuhäuser
Dirk Neuhäuser
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022