Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Overview

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance

Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leora Horwitz, and David Sontag. 2021. Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance. In Thirty-fifth Conference on Neural Information Processing Systems.

Individuals often make different decisions when faced with the same context, due to personal preferences and background. For instance, judges may vary in their leniency towards certain drug-related offenses, and doctors may vary in their preference for how to start treatment for certain types of patients. With these examples in mind, we present an algorithm for identifying types of contexts (e.g., types of cases or patients) with high inter-decision-maker disagreement. We formalize this as a causal inference problem, seeking a region where the assignment of decision-maker has a large causal effect on the decision. We give an iterative algorithm to find a region maximizing this objective and give a generalization bound for its performance. In a semi-synthetic experiment, we show that our algorithm recovers the correct region of disagreement accurately compared to baselines. Finally, we apply our algorithm to real-world healthcare datasets, recovering variation that aligns with existing clinical knowledge.

To run our algorithm, see run_semisynth_exp_recover_beta.ipynb for how to call IterativeRegionEstimator.py. The baselines and our model are also implemented in baselines.py. Helper functions (e.g. for evaluation) are in helpers.py.

Please refer to the following steps to reproduce the experiments and figures in this paper:

  1. To set-up the required packages, run create_env.sh, passing in a conda environment name. Then run source activate with the environment name to enter it.

  2. To run the semi-synthetic experiment,

    1. Download the criminal justice dataset from https://github.com/stanford-policylab/recidivism-predictions
    2. Process the data using data_processing/semisynth_process_data.ipynb.
    3. To run the iterative algorithm and baselines, run python3 run_baselines_on_semisynth.py with the product of the following arguments:
      1. type of model: Iterative, Direct, TarNet, ULearner, CausalForest
      2. number of agents: 2, 5, 10, 20, 40, 87 in our experiments
      3. subset: drug_possession, misdemeanor_under35
    4. Figures 1, 3, and 4 compare metrics for the methods. They can be produced by running plot_semisynth.ipynb.
    5. Figure 2 examines tuning the region size. run_semisynth_exp_recoverbeta.ipynb is a stand-alone notebook for reproducing it.
    6. Figures 5 and 6 examine convergence of the iterative algorithm. They can be produced by running plot_convergence.ipynb.
    7. Figures 7 and 8 examine how robust the iterative algorithm and direct baselines are to violations of the assumption that there are two agent groups. First, run python3 run_robustness_semisynth_experiment.py with the product of the following arguments:
      1. type of model: Iterative, Direct
      2. number of groups: 2, 3, 5, 10
      3. subset: drug_possession, misdemeanor_under35 Note that the number of agents is fixed at 40. The figures can then be produced by running plot_robustness.ipynb.
    8. Note: Helper code that is called to generate semi-synthetic data is located in semisynth_subsets.py, semisynth_dataloader.py, and semisynth_dataloader_robust.py.
  3. The real-world diabetes experiment uses proprietary data extracted using generate_t2dm_cohort.sql and first_line.sql.

    1. Select an outcome model from logistic regressions, decision trees, and random forests based on AUC, calibration, and partial dependence plots. Figure 9 and the statistics in Table 2 that guided our selection of a random forest outcome model are produced in select_outcome_model_for_diabetes_experiment.ipynb.
    2. The experiment is run with python3 run_baseline_models.py diabetes Iterative DecisionTree RandomForest. Figure 10b, the information needed to create Figures 10a, the statistics in Tables 1 and 3, and the fold consistency evaluation will be outputted.
    3. Note: Data loading helper functions, including how data is split, are located in real_data_loader.py. Most of the functions called to generate the output are located in realdata_analysis.py.
  4. The real-world Parkinson's experiment was run using open-access data.

    1. Download the data from https://www.ppmi-info.org/.
    2. Run python3 ppmi_feature_extraction.py passing in the directory containing the downloaded raw data and directory where processed data will be outputted.
    3. Manually process the treatment data to correct for typos in the drug name and treatment date
    4. Run process_parkinsons_data.ipynb to gather the data for the experiment.
    5. The experiment is run with python3 run_baseline_models.py ppmi Iterative DecisionTree. The information for creating Figure 11 and Table 4 are outputted.
Owner
Sontag Lab
Machine learning algorithms and applications to health care.
Sontag Lab
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022