Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Overview

Permuton-induced Chinese Restaurant Process

animationMCMCepinions

Note: Currently only the Matlab version is available, but a Python version will be available soon!

This is a demo code for Bayesian nonparametric relational data analysis based on Permuton-induced Chinese Restaurant Process (NeurIPS, 2021). The key features are listed as follows:

  • Clustering based on rectangular partitioning: For an input matrix, the algorithm probabilistically searches for the row and column order and rectangular partitioning so that similar elements are clustered in each block as much as possible.
  • Infinite model complexity: There is no need to fix the suitable number of rectangle clusters in advance, which is a fundamental principle of Bayesian nonparametric machine learning.
  • Arbitrary rectangular partitioning: It can potentially obtain a posterior distribution on arbitrary rectangular partitioning with any numbers of rectangle blocks.
  • Empirically faster mixing of Markov chain Monte Carlo (MCMC) iterations: The method most closely related to this algorithm is the Baxter Permutation Process (NeurIPS, 2020). Typically, this algorithm seems to be able to mix MCMC faster than the Baxter permutation process empirically.

You will need a basic MATLAB installation with Statistics and Machine Learning Toolbox.

In a nutshell

  1. cd permuton-induced-crp
  2. run

Then, the MCMC evolution will appear like the gif animation at the top of this page. The following two items are particularly noteworthy.

  • Top center: Probabilistic rectangular partitioning of a sample matrix (irmdata\sampledata.mat ).
  • Bottom right: Posterior probability.

Interpretation of analysis results

model

The details of the visualization that will be drawn while running the MCMC iterations require additional explanation of our model. Please refer to the paper for more details. Our model, an extension of the Chinese Restaurant Process (CRP), consists of a generative probabilistic model as shown in the figure above (taken from the original paper). While the standard CRP achieves sequence clustering by the analogy of placing customers (data) on tables (clusters), our model additionally achieves array clustering by giving the random table coordinates on [0,1]x[0,1] drawn from the permuton. By viewing the table coordinates as a geometric representation of a permutation, we can use the permutation-to-rectangulation transformation to obtain a rectangular partition of the matrix.

  • Bottom center: Random coordinates of the CRP tables on [0,1]x[0,1]. The size of each table (circle) reflects the number of customers sitting at that table.
  • Top left: Diagonal rectangulation corresponding to the permutation represented by the table coordinates.
  • Bottom left: Generic rectangulation corresponding to the permutation represented by the table coordinates.

Details of usage

Given an input relational matrix, the Permuton-induced Chinese Restaurant Process can be fitted to it by a MCMC inference algorithm as follows:

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X);

or

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X, opt);

  • X: An M by N input observation matrix. Each element must be natural numbers.
  • opt.maxiter: Maximum number of MCMC iterations.
  • opt.missingRatio: Ratio of test/(training+test) for prediction performance evaluation based on perplexity.

Reference

  1. M. Nakano, Yasuhiro Fujiwara, A. Kimura, T. Yamada, and N. Ueda, 'Permuton-induced Chinese Restaurant Process,' Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

    @inproceedings{Nakano2021,
     author = {Nakano, Masahiro and Fujiwara, Yasuhiro and Kimura, Akisato and Yamada, Takeshi and Ueda, Naonori},
     booktitle = {Advances in Neural Information Processing Systems},
     pages = {},
     publisher = {Curran Associates, Inc.},
     title = {Permuton-induced Chinese Restaurant Process},
     url = {},
     volume = {34},
     year = {2021}
    }
    
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022