Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Overview

Permuton-induced Chinese Restaurant Process

animationMCMCepinions

Note: Currently only the Matlab version is available, but a Python version will be available soon!

This is a demo code for Bayesian nonparametric relational data analysis based on Permuton-induced Chinese Restaurant Process (NeurIPS, 2021). The key features are listed as follows:

  • Clustering based on rectangular partitioning: For an input matrix, the algorithm probabilistically searches for the row and column order and rectangular partitioning so that similar elements are clustered in each block as much as possible.
  • Infinite model complexity: There is no need to fix the suitable number of rectangle clusters in advance, which is a fundamental principle of Bayesian nonparametric machine learning.
  • Arbitrary rectangular partitioning: It can potentially obtain a posterior distribution on arbitrary rectangular partitioning with any numbers of rectangle blocks.
  • Empirically faster mixing of Markov chain Monte Carlo (MCMC) iterations: The method most closely related to this algorithm is the Baxter Permutation Process (NeurIPS, 2020). Typically, this algorithm seems to be able to mix MCMC faster than the Baxter permutation process empirically.

You will need a basic MATLAB installation with Statistics and Machine Learning Toolbox.

In a nutshell

  1. cd permuton-induced-crp
  2. run

Then, the MCMC evolution will appear like the gif animation at the top of this page. The following two items are particularly noteworthy.

  • Top center: Probabilistic rectangular partitioning of a sample matrix (irmdata\sampledata.mat ).
  • Bottom right: Posterior probability.

Interpretation of analysis results

model

The details of the visualization that will be drawn while running the MCMC iterations require additional explanation of our model. Please refer to the paper for more details. Our model, an extension of the Chinese Restaurant Process (CRP), consists of a generative probabilistic model as shown in the figure above (taken from the original paper). While the standard CRP achieves sequence clustering by the analogy of placing customers (data) on tables (clusters), our model additionally achieves array clustering by giving the random table coordinates on [0,1]x[0,1] drawn from the permuton. By viewing the table coordinates as a geometric representation of a permutation, we can use the permutation-to-rectangulation transformation to obtain a rectangular partition of the matrix.

  • Bottom center: Random coordinates of the CRP tables on [0,1]x[0,1]. The size of each table (circle) reflects the number of customers sitting at that table.
  • Top left: Diagonal rectangulation corresponding to the permutation represented by the table coordinates.
  • Bottom left: Generic rectangulation corresponding to the permutation represented by the table coordinates.

Details of usage

Given an input relational matrix, the Permuton-induced Chinese Restaurant Process can be fitted to it by a MCMC inference algorithm as follows:

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X);

or

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X, opt);

  • X: An M by N input observation matrix. Each element must be natural numbers.
  • opt.maxiter: Maximum number of MCMC iterations.
  • opt.missingRatio: Ratio of test/(training+test) for prediction performance evaluation based on perplexity.

Reference

  1. M. Nakano, Yasuhiro Fujiwara, A. Kimura, T. Yamada, and N. Ueda, 'Permuton-induced Chinese Restaurant Process,' Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

    @inproceedings{Nakano2021,
     author = {Nakano, Masahiro and Fujiwara, Yasuhiro and Kimura, Akisato and Yamada, Takeshi and Ueda, Naonori},
     booktitle = {Advances in Neural Information Processing Systems},
     pages = {},
     publisher = {Curran Associates, Inc.},
     title = {Permuton-induced Chinese Restaurant Process},
     url = {},
     volume = {34},
     year = {2021}
    }
    
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022