A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Overview

Masked Autoencoders Are Scalable Vision Learners

Open In Colab

A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementation of the proposed method is available in mae-pretraining.ipynb notebook. It includes evaluation with linear probing as well. Furthermore, the notebook can be fully executed on Google Colab. Our main objective is to present the core idea of the proposed method in a minimal and readable manner. We have also prepared a blog for getting started with Masked Autoencoder easily.


With just 100 epochs of pre-training and a fairly lightweight and asymmetric Autoencoder architecture we achieve 49.33%% accuracy with linear probing on the CIFAR-10 dataset. Our training logs and encoder weights are released in Weights and Logs. For comparison, we took the encoder architecture and trained it from scratch (refer to regular-classification.ipynb) in a fully supervised manner. This gave us ~76% test top-1 accuracy.

We note that with further hyperparameter tuning and more epochs of pre-training, we can achieve a better performance with linear-probing. Below we present some more results:

Config Masking
proportion
LP
performance
Encoder weights
& logs
Encoder & decoder layers: 3 & 1
Batch size: 256
0.6 44.25% Link
Do 0.75 46.84% Link
Encoder & decoder layers: 6 & 2
Batch size: 256
0.75 48.16% Link
Encoder & decoder layers: 9 & 3
Batch size: 256
Weight deacy: 1e-5
0.75 49.33% Link

LP denotes linear-probing. Config is mostly based on what we define in the hyperparameters section of this notebook: mae-pretraining.ipynb.

Acknowledgements

References

[1] Masked Autoencoders Are Scalable Vision Learners; He et al.; arXiv 2021; https://arxiv.org/abs/2111.06377.

You might also like...
A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Official implementation of the paper
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

SimMIM: A Simple Framework for Masked Image Modeling
SimMIM: A Simple Framework for Masked Image Modeling

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

SeMask: Semantically Masked Transformers for Semantic Segmentation.
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

FocusFace: Multi-task Contrastive Learning for Masked Face Recognition
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Comments
  • Excellent work (`mae.ipynb`)!

    Excellent work (`mae.ipynb`)!

    @ariG23498 this is fantastic stuff. Super clean, readable, and coherent with the original implementation. A couple of suggestions that would likely make things even better:

    • Since you have already implemented masking visualization utilities how about making them part of the PatchEncoder itself? That way you could let it accept a test image, apply random masking, and plot it just like the way you are doing in the earlier cells. This way I believe the notebook will be cleaner.
    • AdamW (tfa.optimizers.adamw) is a better choice when it comes to training Transformer-based models.
    • Are we taking the loss on the correct component? I remember you mentioning it being dealt with differently.

    After these points are addressed I will take a crack at porting the training loop to TPUs along with other performance monitoring callbacks.

    opened by sayakpaul 7
  • Unshuffle the patches?

    Unshuffle the patches?

    Your code helps me a lot! However, I still have some questions. In the paper, the authors say they unshuffle the full list before applying the deocder. In the MaskedAutoencoder class of your implementation, decoder_inputs = tf.concat([encoder_outputs, masked_embeddings], axis=1)
    no unshuffling is used. I wonder if you can tell me the purpose of doing so? Thanks a lot!

    opened by changtaoli 2
  • Could you also share the weight of the pretrained decoder?

    Could you also share the weight of the pretrained decoder?

    Hi,

    Thanks for your excellent implementation! I found that you have shared the weights of the encoder, but if we want to replicate the reconstruction, the pretrained decoder is still needed. So, could you also share the weight of the pretrained decoder?

    Best Regards, Hongxin

    opened by hongxin001 1
  • Issue with the plotting utility `show_masked_image`

    Issue with the plotting utility `show_masked_image`

    Should be:

    def show_masked_image(self, patches):
            # Utility function that helps visualize maksed images.
            _, unmask_indices = self.get_random_indices()
            unmasked_patches = tf.gather(patches, unmask_indices, axis=1, batch_dims=1)
    
            # Necessary for plotting.
            ids = tf.argsort(unmask_indices)
            sorted_unmask_indices = tf.sort(unmask_indices)
            unmasked_patches = tf.gather(unmasked_patches, ids, batch_dims=1)
    
            # Select a random index for visualization.
            idx = np.random.choice(len(sorted_unmask_indices))
            print(f"Index selected: {idx}.")
    
            n = int(np.sqrt(NUM_PATCHES))
            unmask_index = sorted_unmask_indices[idx]
            unmasked_patch = unmasked_patches[idx]
    
            plt.figure(figsize=(4, 4))
    
            count = 0
            for i in range(NUM_PATCHES):
                ax = plt.subplot(n, n, i + 1)
    
                if count < unmask_index.shape[0] and unmask_index[count].numpy() == i:
                    patch = unmasked_patch[count]
                    patch_img = tf.reshape(patch, (PATCH_SIZE, PATCH_SIZE, 3))
                    plt.imshow(patch_img)
                    plt.axis("off")
                    count = count + 1
                else:
                    patch_img = tf.zeros((PATCH_SIZE, PATCH_SIZE, 3))
                    plt.imshow(patch_img)
                    plt.axis("off")
            plt.show()
    
            # Return the random index to validate the image outside the method.
            return idx
    
    opened by ariG23498 1
Releases(v1.0.0)
Owner
Aritra Roy Gosthipaty
Learning with a learning rate of 1e-10.
Aritra Roy Gosthipaty
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022