Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

Related tags

Deep LearningAVATAR
Overview

AVATAR

  • Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.
  • AVATAR stands for jAVA-pyThon progrAm tRanslation.
  • AVATAR is a corpus of 8,475 programming problems and their solutions written in Java and Python.
  • Supervised fine-tuning and evaluation in terms of Computational Accuracy, see details here.

Table of Contents

Dataset

We have collected the programming problems and their solutions from competitive programming sites, online platforms, and open source repositories. We list the sources below.

  • CodeForces
  • AtCoder
  • CodeJam
  • GeeksforGeeks
  • LeetCode
  • ProjectEuler

Data collected can be downloaded by following:

cd data
bash download.sh

To prepare the data, we perform the following steps.

  • Removing docstrings, comments, etc.
  • Use baseline models' tokenizer to perform tokenization.
  • Filter data based on length threshold (~512).
  • Perform de-duplication. (remove examples that are duplicates)

To perform the preparation, run:

cd data
bash prepare.sh

Models

We studied 8 models for program translation.

Models trained from scratch

Pre-trained models

Training & Evaluation

To train and evaluate a model, go to the corresponding model directory and execute the run.sh script.

# Seq2Seq+Attn.
cd seq2seq
bash rnn.sh GPU_ID LANG1 LANG2

# Transformer
cd seq2seq
bash transformer.sh GPU_ID LANG1 LANG2

# CodeGPT
cd codegpt
bash run.sh GPU_ID LANG1 LANG2 CodeGPT

# CodeGPT-adapted
cd codegpt
bash run.sh GPU_ID LANG1 LANG2

# CodeBERT
cd codebert
bash run.sh GPU_ID LANG1 LANG2

# GraphCoderBERT
cd graphcodebert
bash run.sh GPU_ID LANG1 LANG2

# PLBART
cd plbart
# fine-tuning either for Java->Python or Python-Java
bash run.sh GPU_ID LANG1 LANG2
# multilingual fine-tuning
bash multilingual.sh GPU_ID

# Naive Copy
cd naivecopy
bash run.sh
  • Here, LANG1 LANG2=Java Python or LANG1 LANG2=Python Java.
  • Download pre-trained PLBART, GraphCodeBERT, and Transcoder model files by running download.sh script.
  • We trained the models on GeForce RTX 2080 ti GPUs (11019MiB).

Benchmarks

We evaluate the models' performances on the test set in terms of Compilation Accuracy (CA), BLEU, Syntax Match (SM), Dataflow Match (DM), CodeBLEU (CB), Exact Match (EM). We report the model performances below.

Training Models Java to Python Python to Java
CA BLEU SM DM CB EM CA BLEU SM DM CB EM
None Naive Copy - 23.4 - - - 0.0 - 26.9 - - - 0.0
TransCoder 76.9 36.8 31.0 17.1 29.1 0.1 100 49.4 37.6 18.5 31.9 0.0
TC-DOBF 77.7 43.4 29.7 33.9 34.8 0.0 100 46.1 36.0 12.6 28.8 0.0
From Scratch Seq2Seq+Attn. 66.5 56.3 39.1 18.4 37.9 1.0 71.8 62.7 46.6 28.5 43.0 0.8
Transformer 61.5 38.9 34.2 16.5 29.1 0.0 67.4 45.6 45.7 26.4 37.4 0.1
Pre-trained CodeGPT 47.3 38.2 32.5 11.5 26.1 1.1 71.2 44.0 38.8 26.7 33.8 0.1
CodeGPT-adapted 48.1 38.2 32.5 12.1 26.2 1.2 68.6 42.4 37.2 27.2 33.1 0.5
CodeBERT 62.3 59.3 37.7 16.2 36.7 0.5 74.7 55.3 38.4 22.5 36.1 0.6
GraphCodeBERT 65.7 59.7 38.9 16.4 37.1 0.7 57.2 60.6 48.4 20.6 40.1 0.4
PLBARTmono 76.4 67.1 42.6 19.3 43.3 2.4 34.4 69.1 57.1 34.0 51.4 1.2
PLBARTmulti 70.4 67.1 42.0 17.6 42.4 2.4 30.8 69.4 56.6 34.5 51.8 1.0

License

This dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International license, see the LICENSE file for details.

Citation

@article{ahmad-etal-2021-avatar,
  title={AVATAR: A Parallel Corpus for Java-Python Program Translation},
  author={Ahmad, Wasi Uddin and Tushar, Md Golam Rahman and Chakraborty, Saikat and Chang, Kai-Wei},
  journal={arXiv preprint arXiv:2108.11590},
  year={2021}
}
Owner
Wasi Ahmad
I am a Ph.D. student in CS at UCLA.
Wasi Ahmad
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022