Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Related tags

Deep LearningUID-FDK
Overview

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page

This repository provides the official PyTorch implementation of the following paper:

Unsupervised Image Denoising with Frequency Domain Knowledge

Nahyun Kim* (KAIST), Donggon Jang* (KAIST), Sunhyeok Lee (KAIST), Bomi Kim (KAIST), and Dae-Shik Kim (KAIST) (*The authors have equally contributed.)

BMVC 2021, Accepted as Oral Paper.

Abstract: Supervised learning-based methods yield robust denoising results, yet they are inherently limited by the need for large-scale clean/noisy paired datasets. The use of unsupervised denoisers, on the other hand, necessitates a more detailed understanding of the underlying image statistics. In particular, it is well known that apparent differences between clean and noisy images are most prominent on high-frequency bands, justifying the use of low-pass filters as part of conventional image preprocessing steps. However, most learning-based denoising methods utilize only one-sided information from the spatial domain without considering frequency domain information. To address this limitation, in this study we propose a frequency-sensitive unsupervised denoising method. To this end, a generative adversarial network (GAN) is used as a base structure. Subsequently, we include spectral discriminator and frequency reconstruction loss to transfer frequency knowledge into the generator. Results using natural and synthetic datasets indicate that our unsupervised learning method augmented with frequency information achieves state-of-the-art denoising performance, suggesting that frequency domain information could be a viable factor in improving the overall performance of unsupervised learning-based methods.

Requirements

To install requirements:

conda env create -n [your env name] -f environment.yaml
conda activate [your env name]

To train the model

Synthetic Noise (AWGN)

  1. Download DIV2K dataset for training in here
  2. Randomly split the DIV2K dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(DIV2K_C and DIV2K_N) in ./dataset directory.
dataset
└─── DIV2K_C
└─── DIV2K_N
└─── test
  1. Use gen_dataset_synthetic.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/train_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/train_awgn_sigma50.sh # AWGN with a noise level = 50
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

Real-World Noise

  1. Download SIDD-Medium Dataset for training in here
  2. Radnomly split the SIDD-Medium Dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(SIDD_C and SIDD_N) in ./dataset directory.
dataset
└─── SIDD_C
└─── SIDD_N
└─── test
  1. Use gen_dataset_real.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_real.sh
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

To evaluate the model

Synthetic Noise (AWGN)

  1. Download CBSD68 dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/test_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/test_awgn_sigma50.sh # AWGN with a noise level = 50

Real-World Noise

  1. Download the SIDD test dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_real.sh

Pre-trained model

We provide pre-trained models in ./checkpoints directory.

checkpoints
|   AWGN_sigma15.pth # pre-trained model (AWGN with a noise level = 15)
|   AWGN_sigma25.pth # pre-trained model (AWGN with a noise level = 25)
|   AWGN_sigma50.pth # pre-trained model (AWGN with a noise level = 50)
|   SIDD.pth # pre-trained model (Real-World noise)

Acknowledgements

This code is built on U-GAT-IT,CARN, SSD-GAN. We thank the authors for sharing their codes.

Contact

If you have any questions, feel free to contact me ([email protected])

Owner
Donggon Jang
Donggon Jang
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023