DuBE: Duple-balanced Ensemble Learning from Skewed Data

Overview

DuBE: Duple-balanced Ensemble Learning from Skewed Data

"Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning"
(IEEE ICDE 2022 Submission) [Documentation] [Examples]

DuBE is an ensemble learning framework for (multi)class-imbalanced classification. It is an easy-to-use solution to imbalanced learning problems, features good performance, computing efficiency, and wide compatibility with different learning models. Documentation and examples are available at https://duplebalance.readthedocs.io.

Table of Contents

Background

Imbalanced Learning (IL) is an important problem that widely exists in data mining applications. Typical IL methods utilize intuitive class-wise resampling or reweighting to directly balance the training set. However, some recent research efforts in specific domains show that class-imbalanced learning can be achieved without class-wise manipulation. This prompts us to think about the relationship between the two different IL strategies and the nature of the class imbalance. Fundamentally, they correspond to two essential imbalances that exist in IL: the difference in quantity between examples from different classes as well as between easy and hard examples within a single class, i.e., inter-class and intra-class imbalance.

image

Existing works fail to explicitly take both imbalances into account and thus suffer from suboptimal performance. In light of this, we present Duple-Balanced Ensemble, namely DUBE, a versatile ensemble learning framework. Unlike prevailing methods, DUBE directly performs inter-class and intra-class balancing without relying on heavy distance-based computation, which allows it to achieve competitive performance while being computationally efficient.

image

Install

Our DuBE implementation requires following dependencies:

You can install DuBE by clone this repository:

git clone https://github.com/ICDE2022Sub/duplebalance.git
cd duplebalance
pip install .

Usage

For more detailed usage example, please see Examples.

A minimal working example:

# load dataset & prepare environment
from duplebalance import DupleBalanceClassifier
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_classes=3,
                           n_informative=4, weights=[0.2, 0.3, 0.5],
                           random_state=0)

# ensemble training
clf = DupleBalanceClassifier(
    n_estimators=10,
    random_state=42,
    ).fit(X_train, y_train)

# predict
y_pred_test = clf.predict_proba(X_test)

Documentation

For more detailed API references, please see API reference.

Our DupleBalance implementation can be used much in the same way as the ensemble classifiers in sklearn.ensemble. The DupleBalanceClassifier class inherits from the sklearn.ensemble.BaseEnsemble base class.

Main parameters are listed below:

Parameters Description
base_estimator object, optional (default=sklearn.tree.DecisionTreeClassifier())
The base estimator to fit on self-paced under-sampled subsets of the dataset. NO need to support sample weighting. Built-in fit(), predict(), predict_proba() methods are required.
n_estimators int, optional (default=10)
The number of base estimators in the ensemble.
resampling_target {'hybrid', 'under', 'over', 'raw'}, default="hybrid"
Determine the number of instances to be sampled from each class (inter-class balancing).
- If under, perform under-sampling. The class containing the fewest samples is considered the minority class :math:c_{min}. All other classes are then under-sampled until they are of the same size as :math:c_{min}.
- If over, perform over-sampling. The class containing the argest number of samples is considered the majority class :math:c_{maj}. All other classes are then over-sampled until they are of the same size as :math:c_{maj}.
- If hybrid, perform hybrid-sampling. All classes are under/over-sampled to the average number of instances from each class.
- If raw, keep the original size of all classes when resampling.
resampling_strategy {'hem', 'shem', 'uniform'}, default="shem")
Decide how to assign resampling probabilities to instances during ensemble training (intra-class balancing).
- If hem, perform hard-example mining. Assign probability with respect to instance's latest prediction error.
- If shem, perform soft hard-example mining. Assign probability by inversing the classification error density.
- If uniform, assign uniform probability, i.e., random resampling.
perturb_alpha float or str, optional (default='auto')
The multiplier of the calibrated Gaussian noise that was add on the sampled data. It determines the intensity of the perturbation-based augmentation. If 'auto', perturb_alpha will be automatically tuned using a subset of the given training data.
k_bins int, optional (default=5)
The number of error bins that were used to approximate error distribution. It is recommended to set it to 5. One can try a larger value when the smallest class in the data set has a sufficient number (say, > 1000) of samples.
estimator_params list of str, optional (default=tuple())
The list of attributes to use as parameters when instantiating a new base estimator. If none are given, default parameters are used.
n_jobs int, optional (default=None)
The number of jobs to run in parallel for :meth:predict. None means 1 unless in a :obj:joblib.parallel_backend context. -1 means using all processors. See :term:Glossary <n_jobs> for more details.
random_state int / RandomState instance / None, optional (default=None)
If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by numpy.random.
verbose int, optional (default=0)
Controls the verbosity when fitting and predicting.
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023