DuBE: Duple-balanced Ensemble Learning from Skewed Data

Overview

DuBE: Duple-balanced Ensemble Learning from Skewed Data

"Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning"
(IEEE ICDE 2022 Submission) [Documentation] [Examples]

DuBE is an ensemble learning framework for (multi)class-imbalanced classification. It is an easy-to-use solution to imbalanced learning problems, features good performance, computing efficiency, and wide compatibility with different learning models. Documentation and examples are available at https://duplebalance.readthedocs.io.

Table of Contents

Background

Imbalanced Learning (IL) is an important problem that widely exists in data mining applications. Typical IL methods utilize intuitive class-wise resampling or reweighting to directly balance the training set. However, some recent research efforts in specific domains show that class-imbalanced learning can be achieved without class-wise manipulation. This prompts us to think about the relationship between the two different IL strategies and the nature of the class imbalance. Fundamentally, they correspond to two essential imbalances that exist in IL: the difference in quantity between examples from different classes as well as between easy and hard examples within a single class, i.e., inter-class and intra-class imbalance.

image

Existing works fail to explicitly take both imbalances into account and thus suffer from suboptimal performance. In light of this, we present Duple-Balanced Ensemble, namely DUBE, a versatile ensemble learning framework. Unlike prevailing methods, DUBE directly performs inter-class and intra-class balancing without relying on heavy distance-based computation, which allows it to achieve competitive performance while being computationally efficient.

image

Install

Our DuBE implementation requires following dependencies:

You can install DuBE by clone this repository:

git clone https://github.com/ICDE2022Sub/duplebalance.git
cd duplebalance
pip install .

Usage

For more detailed usage example, please see Examples.

A minimal working example:

# load dataset & prepare environment
from duplebalance import DupleBalanceClassifier
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_classes=3,
                           n_informative=4, weights=[0.2, 0.3, 0.5],
                           random_state=0)

# ensemble training
clf = DupleBalanceClassifier(
    n_estimators=10,
    random_state=42,
    ).fit(X_train, y_train)

# predict
y_pred_test = clf.predict_proba(X_test)

Documentation

For more detailed API references, please see API reference.

Our DupleBalance implementation can be used much in the same way as the ensemble classifiers in sklearn.ensemble. The DupleBalanceClassifier class inherits from the sklearn.ensemble.BaseEnsemble base class.

Main parameters are listed below:

Parameters Description
base_estimator object, optional (default=sklearn.tree.DecisionTreeClassifier())
The base estimator to fit on self-paced under-sampled subsets of the dataset. NO need to support sample weighting. Built-in fit(), predict(), predict_proba() methods are required.
n_estimators int, optional (default=10)
The number of base estimators in the ensemble.
resampling_target {'hybrid', 'under', 'over', 'raw'}, default="hybrid"
Determine the number of instances to be sampled from each class (inter-class balancing).
- If under, perform under-sampling. The class containing the fewest samples is considered the minority class :math:c_{min}. All other classes are then under-sampled until they are of the same size as :math:c_{min}.
- If over, perform over-sampling. The class containing the argest number of samples is considered the majority class :math:c_{maj}. All other classes are then over-sampled until they are of the same size as :math:c_{maj}.
- If hybrid, perform hybrid-sampling. All classes are under/over-sampled to the average number of instances from each class.
- If raw, keep the original size of all classes when resampling.
resampling_strategy {'hem', 'shem', 'uniform'}, default="shem")
Decide how to assign resampling probabilities to instances during ensemble training (intra-class balancing).
- If hem, perform hard-example mining. Assign probability with respect to instance's latest prediction error.
- If shem, perform soft hard-example mining. Assign probability by inversing the classification error density.
- If uniform, assign uniform probability, i.e., random resampling.
perturb_alpha float or str, optional (default='auto')
The multiplier of the calibrated Gaussian noise that was add on the sampled data. It determines the intensity of the perturbation-based augmentation. If 'auto', perturb_alpha will be automatically tuned using a subset of the given training data.
k_bins int, optional (default=5)
The number of error bins that were used to approximate error distribution. It is recommended to set it to 5. One can try a larger value when the smallest class in the data set has a sufficient number (say, > 1000) of samples.
estimator_params list of str, optional (default=tuple())
The list of attributes to use as parameters when instantiating a new base estimator. If none are given, default parameters are used.
n_jobs int, optional (default=None)
The number of jobs to run in parallel for :meth:predict. None means 1 unless in a :obj:joblib.parallel_backend context. -1 means using all processors. See :term:Glossary <n_jobs> for more details.
random_state int / RandomState instance / None, optional (default=None)
If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by numpy.random.
verbose int, optional (default=0)
Controls the verbosity when fitting and predicting.
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022