[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Overview

Context Encoders: Feature Learning by Inpainting

CVPR 2016

[Project Website] [Imagenet Results]

Sample results on held-out images:

teaser

This is the training code for our CVPR 2016 paper on Context Encoders for learning deep feature representation in an unsupervised manner by image inpainting. Context Encoders are trained jointly with reconstruction and adversarial loss. This repo contains quick demo, training/testing code for center region inpainting and training/testing code for arbitray random region inpainting. This code is adapted from an initial fork of Soumith's DCGAN implementation. Scroll down to try out a quick demo or train your own inpainting models!

If you find Context Encoders useful in your research, please cite:

@inproceedings{pathakCVPR16context,
    Author = {Pathak, Deepak and Kr\"ahenb\"uhl, Philipp and Donahue, Jeff and Darrell, Trevor and Efros, Alexei},
    Title = {Context Encoders: Feature Learning by Inpainting},
    Booktitle = {Computer Vision and Pattern Recognition ({CVPR})},
    Year = {2016}
}

Contents

  1. Semantic Inpainting Demo
  2. Train Context Encoders
  3. Download Features Caffemodel
  4. TensorFlow Implementation
  5. Project Website
  6. Download Dataset

1) Semantic Inpainting Demo

  1. Install Torch: http://torch.ch/docs/getting-started.html#_

  2. Clone the repository

git clone https://github.com/pathak22/context-encoder.git
  1. Demo
cd context-encoder
bash ./models/scripts/download_inpaintCenter_models.sh
# This will populate the `./models/` folder with trained models.

net=models/inpaintCenter/paris_inpaintCenter.t7 name=paris_result imDir=images/paris overlapPred=4 manualSeed=222 batchSize=21 gpu=1 th demo.lua
net=models/inpaintCenter/imagenet_inpaintCenter.t7 name=imagenet_result imDir=images/imagenet overlapPred=4 manualSeed=222 batchSize=21 gpu=1 th demo.lua
net=models/inpaintCenter/paris_inpaintCenter.t7 name=ucberkeley_result imDir=images/ucberkeley overlapPred=4 manualSeed=222 batchSize=4 gpu=1 th demo.lua
# Note: If you are running on cpu, use gpu=0
# Note: samples given in ./images/* are held-out images

2) Train Context Encoders

If you could successfully run the above demo, run following steps to train your own context encoder model for image inpainting.

  1. [Optional] Install Display Package as follows. If you don't want to install it, then set display=0 in train.lua.
luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
cd ~
th -ldisplay.start 8000
# if working on server machine create tunnel: ssh -f -L 8000:localhost:8000 -N server_address.com
# on client side, open in browser: http://localhost:8000/
  1. Make the dataset folder.
mkdir -p /path_to_wherever_you_want/mydataset/train/images/
# put all training images inside mydataset/train/images/
mkdir -p /path_to_wherever_you_want/mydataset/val/images/
# put all val images inside mydataset/val/images/
cd context-encoder/
ln -sf /path_to_wherever_you_want/mydataset dataset
  1. Train the model
# For training center region inpainting model, run:
DATA_ROOT=dataset/train display_id=11 name=inpaintCenter overlapPred=4 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=128 gpu=1 th train.lua

# For training random region inpainting model, run:
DATA_ROOT=dataset/train display_id=11 name=inpaintRandomNoOverlap useOverlapPred=0 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=128 gpu=1 th train_random.lua
# or use fineSize=64 to train to generate 64x64 sized image (results are better):
DATA_ROOT=dataset/train display_id=11 name=inpaintRandomNoOverlap useOverlapPred=0 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=64 gpu=1 th train_random.lua
  1. Test the model
# For training center region inpainting model, run:
DATA_ROOT=dataset/val net=checkpoints/inpaintCenter_500_net_G.t7 name=test_patch overlapPred=4 manualSeed=222 batchSize=30 loadSize=350 gpu=1 th test.lua
DATA_ROOT=dataset/val net=checkpoints/inpaintCenter_500_net_G.t7 name=test_full overlapPred=4 manualSeed=222 batchSize=30 loadSize=129 gpu=1 th test.lua

# For testing random region inpainting model, run (with fineSize=64 or 124, same as training):
DATA_ROOT=dataset/val net=checkpoints/inpaintRandomNoOverlap_500_net_G.t7 name=test_patch_random useOverlapPred=0 manualSeed=222 batchSize=30 loadSize=350 gpu=1 th test_random.lua
DATA_ROOT=dataset/val net=checkpoints/inpaintRandomNoOverlap_500_net_G.t7 name=test_full_random useOverlapPred=0 manualSeed=222 batchSize=30 loadSize=129 gpu=1 th test_random.lua

3) Download Features Caffemodel

Features for context encoder trained with reconstruction loss.

4) TensorFlow Implementation

Checkout the TensorFlow implementation of our paper by Taeksoo here. However, it does not implement full functionalities of our paper.

5) Project Website

Click here.

6) Paris Street-View Dataset

Please email me if you need the dataset and I will share a private link with you. I can't post the public link to this dataset due to the policy restrictions from Google Street View.

Owner
Deepak Pathak
Assistant Professor, CMU; (PhD @ UC Berkeley and BTech CS @ IIT Kanpur)
Deepak Pathak
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Roger Labbe 13k Dec 29, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022