[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

Overview

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification

In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreases the costs in both the training and deployment stages of person ReID. We develop an automatic data synthesis toolkit and use synthesized data in mutiple ReID tasks, including (i) Direct transfer, (ii) Unsupervised domain adaptation, and (iii) Supervised fine-tuning.

The repo contains the synthesized data we use in the paper and presents examples of how to use synthesized data in various down-stream tasks to boost the ReID performance.

The codes are based on CBN (ECCV 2020) and JVTC (ECCV 2020).

Highlights:

  1. In direct transfer evaluation, we achieve 38.5% rank-1 accuracy on MSMT17 and 79.0% on Market-1501 using our unreal data.
  2. In unsupervised domain adaptation, we achieve 68.2% rank-1 accuracy on MSMT17 and 93.0% on Market-1501 using our unreal data.
  3. We obtain a better pre-trained ReID model with our unreal data.

Demonstration

Data Details

Our synthesized data (named Unreal in the paper) is generated with Makehuman, Mixamo, and UnrealEngine 4. We provide 1.2M images of 6.8K identities, captured from 4 unreal environments.

Beihang Netdisk: Download Link valid until: 2024-01-01

BaiduPan: Download Link password: abcd

The image path is formulated as: unreal_v{X}.{Y}/images/{P}_c{D}_{F}.jpg, for example, unreal_v3.1/images/333_c001_78.jpg.

X represents the ID of unreal environment; Y is the version of human models; P is the person identity label; D is the camera label; F is the frame number.

We provide three types of human models: version 1 is the basic type; version 2 contains accessories, like handbags, hats and backpacks; version 3 contains hard samples with similar global appearance. Four virtual environments are used in our synthesized data: the first three are city environments and the last one is a supermarket. Note that cameras under different virtual environments may have the same label and persons of different versions may also have the same identity label. Therefore, images with the same (Y, P) belong to the same virtual person; images with the same (X, D) belong to the same camera.

The data synthesis toolkit, including Makehuman plugin, several UE4 blueprints and data annotation scripts, will be published soon.

UnrealPerson Pipeline

Direct Transfer and Supervised Fine-tuning

We use Camera-based Batch Normalization baseline for direct transfer and supervised fine-tuning experiments.

1. Clone this repo and change directory to CBN

git clone https://github.com/FlyHighest/UnrealPerson.git
cd UnrealPerson/CBN

2. Download Market-1501, DukeMTMC-reID, MSMT17, UnrealPerson data and organize them as follows:

.
+-- data
|   +-- market
|       +-- bounding_box_train
|       +-- query
|       +-- bounding_box_test
|   +-- duke
|       +-- bounding_box_train
|       +-- query
|       +-- bounding_box_test
|   +-- msmt17
|       +-- train
|       +-- test
|       +-- list_train.txt
|       +-- list_val.txt
|       +-- list_query.txt
|       +-- list_gallery.txt
|   +-- unreal_vX.Y
|       +-- images
+ -- other files in this repo

3. Install the required packages

pip install -r requirements.txt

4. Put the official PyTorch ResNet-50 pretrained model to your home folder: '~/.torch/models/'

5. Train a ReID model with our synthesized data

Reproduce the results in our paper:

CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0,1 \
python train_model.py train --trainset_name unreal --datasets='unreal_v1.1,unreal_v2.1,unreal_v3.1,unreal_v4.1,unreal_v1.2,unreal_v2.2,unreal_v3.2,unreal_v4.2,unreal_v1.3,unreal_v2.3,unreal_v3.3,unreal_v4.3' --save_dir='unreal_4678_v1v2v3_cambal_3000' --save_step 15  --num_pids 3000 --cam_bal True --img_per_person 40

We also provide the trained weights of this experiment in the data download links above.

Configs: When trainset_name is unreal, datasets contains the directories of unreal data that will be used. num_pids is the number of humans and cam_bal denotes the camera balanced sampling strategy is adopted. img_per_person controls the size of the training set.

More configurations are in config.py.

6.1 Direct transfer to real datasets

CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0 \
python test_model.py test --testset_name market --save_dir='unreal_4678_v1v2v3_cambal_3000'

6.2 Fine-tuning

CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=1,0 \
python train_model.py train --trainset_name market --save_dir='market_unrealpretrain_demo' --max_epoch 60 --decay_epoch 40 --model_path pytorch-ckpt/current/unreal_4678_v1v2v3_cambal_3000/model_best.pth.tar


CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0 \
python test_model.py test --testset_name market --save_dir='market_unrealpretrain_demo'

Unsupervised Domain Adaptation

We use joint visual and temporal consistency (JVTC) framework. CBN is also implemented in JVTC.

1. Clone this repo and change directory to JVTC

git clone https://github.com/FlyHighest/UnrealPerson.git
cd UnrealPerson/JVTC

2. Prepare data

Basicly, it is the same as CBN, except for an extra directory bounding_box_train_camstyle_merge, which can be downloaded from ECN. We suggest using ln -s to save disk space.

.
+-- data
|   +-- market
|       +-- bounding_box_train
|       +-- query
|       +-- bounding_box_test
|       +-- bounding_box_train_camstyle_merge
+ -- other files in this repo

3. Install the required packages

pip install -r ../CBN/requirements.txt

4. Put the official PyTorch ResNet-50 pretrained model to your home folder: '~/.torch/models/'

5. Train and test

(Unreal to MSMT)

python train_cbn.py --gpu_ids 0,1,2 --src unreal --tar msmt --num_cam 6 --name unreal2msmt --max_ep 60

python test_cbn.py --gpu_ids 1 --weights snapshot/unreal2msmt/resnet50_unreal2market_epoch60_cbn.pth --name 'unreal2msmt' --tar market --num_cam 6 --joint True 

The unreal data used in JVTC is defined in list_unreal/list_unreal_train.txt. The CBN codes support generating this file (see CBN/io_stream/datasets/unreal.py).

More details can be seen in JVTC.

References

  • [1] Rethinking the Distribution Gap of Person Re-identification with Camera-Based Batch Normalization. ECCV 2020.

  • [2] Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive Person Re-Identification. ECCV 2020.

Cite our paper

If you find our work useful in your research, please kindly cite:

@misc{zhang2020unrealperson,
      title={UnrealPerson: An Adaptive Pipeline towards Costless Person Re-identification}, 
      author={Tianyu Zhang and Lingxi Xie and Longhui Wei and Zijie Zhuang and Yongfei Zhang and Bo Li and Qi Tian},
      year={2020},
      eprint={2012.04268},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions about the data or paper, please leave an issue or contact me: [email protected]

Owner
ZhangTianyu
ZhangTianyu
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021