Probabilistic Gradient Boosting Machines

Related tags

Deep Learningpgbm
Overview

PGBM Airlab Amsterdam

PyPi version Python version GitHub license

Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Airlab in Amsterdam. It provides the following advantages over existing frameworks:

  • Probabilistic regression estimates instead of only point estimates. (example)
  • Auto-differentiation of custom loss functions. (example, example)
  • Native (multi-)GPU-acceleration. (example, example)
  • Ability to optimize probabilistic estimates after training for a set of common distributions, without retraining the model. (example)

It is aimed at users interested in solving large-scale tabular probabilistic regression problems, such as probabilistic time series forecasting. For more details, read our paper or check out the examples.

Installation

Run pip install pgbm from a terminal within a Python (virtual) environment of your choice.

Verification

  • Download & run an example from the examples folder to verify the installation is correct:
    • Run this example to verify ability to train & predict on CPU with Torch backend.
    • Run this example to verify ability to train & predict on GPU with Torch backend.
    • Run this example to verify ability to train & predict on CPU with Numba backend.
  • Note that when training on the GPU, the custom CUDA kernel will be JIT-compiled when initializing a model. Hence, the first time you train a model on the GPU it can take a bit longer, as PGBM needs to compile the CUDA kernel.
  • When using the Numba-backend, several functions need to be JIT-compiled. Hence, the first time you train a model using this backend it can take a bit longer.
  • To run the examples some additional packages such as scikit-learn or matplotlib are required; these should be installed separately via pip or conda.

Dependencies

The core package has the following dependencies which should be installed separately (installing the core package via pip will not automatically install these dependencies).

Torch backend
  • CUDA Toolkit matching your PyTorch distribution (https://developer.nvidia.com/cuda-toolkit)
  • PyTorch >= 1.7.0, with CUDA 11.0 for GPU acceleration (https://pytorch.org/get-started/locally/). Verify that PyTorch can find a cuda device on your machine by checking whether torch.cuda.is_available() returns True after installing PyTorch.
  • PGBM uses a custom CUDA kernel which needs to be compiled, which may require installing a suitable compiler. Installing PyTorch and the full CUDA Toolkit should be sufficient, but open an issue if you find it still not working even after installing these dependencies.
Numba backend

The Numba backend does not support differentiable loss functions and GPU training is also not supported using this backend.

Support

See the examples folder for examples, an overview of hyperparameters and a function reference. In general, PGBM works similar to existing gradient boosting packages such as LightGBM or xgboost (and it should be possible to more or less use it as a drop-in replacement), except that it is required to explicitly define a loss function and loss metric.

In case further support is required, open an issue.

Reference

Olivier Sprangers, Sebastian Schelter, Maarten de Rijke. Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 21), August 14–18, 2021, Virtual Event, Singapore.

The experiments from our paper can be replicated by running the scripts in the experiments folder. Datasets are downloaded when needed in the experiments except for higgs and m5, which should be pre-downloaded and saved to the datasets folder (Higgs) and to datasets/m5 (m5).

License

This project is licensed under the terms of the Apache 2.0 license.

Acknowledgements

This project was developed by Airlab Amsterdam.

Owner
Olivier Sprangers
PhD student at University of Amsterdam
Olivier Sprangers
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022