PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

Overview

DiscoGAN in PyTorch

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

* All samples in README.md are genearted by neural network except the first image for each row.
* Network structure is slightly diffferent (here) from the author's code.

Requirements

Usage

First download datasets (from pix2pix) with:

$ bash ./data/download_dataset.sh dataset_name

or you can use your own dataset by placing images like:

data
├── YOUR_DATASET_NAME
│   ├── A
│   |   ├── xxx.jpg (name doesn't matter)
│   |   ├── yyy.jpg
│   |   └── ...
│   └── B
│       ├── zzz.jpg
│       ├── www.jpg
│       └── ...
└── download_dataset.sh

All images in each dataset should have same size like using imagemagick:

# for Ubuntu
$ sudo apt-get install imagemagick
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/A/*.jpg
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/B/*.jpg

# for Mac
$ brew install imagemagick
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/A/*.jpg
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/B/*.jpg

# for scale and center crop
$ mogrify -resize 256x256^ -gravity center -crop 256x256+0+0 -quality 100 -path ../A/*.jpg

To train a model:

$ python main.py --dataset=edges2shoes --num_gpu=1
$ python main.py --dataset=YOUR_DATASET_NAME --num_gpu=4

To test a model (use your load_path):

$ python main.py --dataset=edges2handbags --load_path=logs/edges2handbags_2017-03-18_10-55-37 --num_gpu=0 --is_train=False

Results

1. Toy dataset

Result of samples from 2-dimensional Gaussian mixture models. IPython notebook

# iteration: 0:

# iteration: 10000:

2. Shoes2handbags dataset

# iteration: 11200:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (shoe -> handbag -> shoe)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (handbag -> shoe -> handbag)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

3. Edges2shoes dataset

# iteration: 9600:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (color -> sketch -> color)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (sketch -> color -> sketch)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

4. Edges2handbags dataset

# iteration: 9500:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (color -> sketch -> color)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (sketch -> color -> sketch)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

5. Cityscapes dataset

# iteration: 8350:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

6. Map dataset

# iteration: 22200:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

7. Facades dataset

Generation and reconstruction on dense segmentation dataset looks weird which are not included in the paper.
I guess a naive choice of mean square error loss for reconstruction need some change on this dataset.

# iteration: 19450:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

Related works

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022