This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

Overview

ES_OTN_Public

Carlos Güemes Palau, Paul Almasan, Pere Barlet Ros, Albert Cabellos Aparicio

Contact us: [email protected], [email protected]

Abstract

This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

The recent growth of emergent network applications (e.g., satellite networks, vehicular networks) is increasing the complexity of managing modern communication networks. As a result, the community proposed the Digital Twin Networks (DTN) as a key enabler of efficient network management. Network operators can leverage the DTN to perform different optimization tasks (e.g., Traffic Engineering, Network Planning). Deep Reinforcement Learning (DRL) showed a high performance when applied to solve network optimization problems. In the context of DTN, DRL can be leveraged to solve optimization problems without directly impacting the real-world network behavior. However, DRL scales poorly with the problem size and complexity. In this paper, we explore the use of Evolutionary Strategies (ES) to train DRL agents for solving a routing optimization problem. The experimental results show that ES achieved a training time speed-up of 128 and 6 for the NSFNET and GEANT2 topologies respectively.

Instructions to execute

Setting up the enviroment

  1. First, make sure your OS has a functioning implementation of MPI. We recommend using OpenMPI.
  2. Create the virtual environment and activate the environment.
virtualenv -p python3 myenv
source myenv/bin/activate
  1. Then we install the required packages
pip install -r Prerequisites/requirements.txt

or

pip install absl-py==0.13.0 astunparse==1.6.3 cachetools==4.2.2 certifi==2021.5.30 charset-normalizer==2.0.2 cloudpickle==1.6.0 cycler==0.10.0 dataclasses==0.8 decorator==4.4.2 flatbuffers==1.12 gast==0.3.3 google-auth==1.33.0 google-auth-oauthlib==0.4.4 google-pasta==0.2.0 grpcio==1.32.0 gym==0.18.3 h5py==2.10.0 idna==3.2 importlib-metadata==4.6.1 Keras==2.4.3 Keras-Preprocessing==1.1.2 kiwisolver==1.3.1 Markdown==3.3.4 matplotlib==3.3.4 mpi4py==3.0.3 networkx==2.5.1 numpy==1.19.5 oauthlib==3.1.1 opt-einsum==3.3.0 pandas==1.1.5 Pillow==8.2.0 pkg_resources==0.0.0 protobuf==3.17.3 pyasn1==0.4.8 pyasn1-modules==0.2.8 pyglet==1.5.15 pyparsing==2.4.7 python-dateutil==2.8.2 pytz==2021.1 PyYAML==5.4.1 requests==2.26.0 requests-oauthlib==1.3.0 rsa==4.7.2 scipy==1.5.4 six==1.15.0 tensorboard==2.5.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorflow==2.4.0 tensorflow-estimator==2.4.0 termcolor==1.1.0 typing-extensions==3.7.4.3 urllib3==1.26.6 Werkzeug==2.0.1 wrapt==1.12.1 zipp==3.5.0 kspath

NOTE: as an alternative to steps 1-3 you can try to set up a docker image to install both MPI and python. We offer an incomplete dockerfile with the steps needed to cover all the code dependencies at "Prerequisites/sample_dockerfile.dockerfile". The file must be completed so the image also clones the repository and runs the code.

  1. Register custom gym environment
pip install -e gym-environments/

Running ES

  1. Now we can train an ES agent. To do so we execute the following command, choosing an adequate configuration file (*.config).
python train_ES_agent_multipleEnvs.py -c path/to/configuration/file.config
  1. While training occurs the resulting file will be generated in Logs. to visualize the results, we can then plot the results using the following command:
python parse_logs.py -d Logs/log1.txt Logs/log2.txt

We can add one more log files for the "-d" option. We can also add the "-s" option to store the generated graph in a file:

python parse_logs.py -d Logs/log1.txt Logs/log2.txt -s graph_file.png

Running PPO

We also added the code necessary to run the solution using PPO, as to compare its result to ES

  1. To train the PPO agent we must execute the following command.
    • The "-e" option controls the number of iterations in the algorithm
    • The "-f" option is used to indicate the folder in which the topologies are stored ("*.graph") files
    • The "-g" option is used to indicate the name of the topology
    • Notice that inside train_PPO_agent.py there are different hyperparameters that you can configure to set the training for different topologies, to define the size of the GNN model, etc.
python train_PPO_agent.py -e 1500 -f dataset_Topologies -g nsfnet
  1. Now that the training process is executing, we can see the PPO agent performance evolution by parsing the log files.
    • The "-f" and "-g" options are the same as before
    • The "-d" option is used to indicate the path to the log file
python parse_PPO.py -d ./Logs/expsample_PPO_agentLogs.txt -f dataset_Topologies -g nsfnet

Repository contents

  • configs: folder containing the configuration files for the code.

    • As it is right now, the different configuration files should be grouped in subfolders (e.g., BatchFinal) as for the correct generation of the log files.
  • dataset_Topologies: contains the graph and paths files. The graphs must be represented as ".graph" files

  • gym_environments: pip package to be installed, which includes the gym environment to be used to train model

  • Logs: contains the logs generated by training of the models

  • models: contains the parameters of the network at the different stages of its training. The parameters are stored every time the network is updated. The different models will be divided in subfolders.

  • Prerequisites: a folder containing some files that may prove useful to set up the python environment

    • packages.txt: pip freeze of all the python packages needed to run the enviroment.
    • sample_dockerfile.dockerfile: (incomplete) dockerfile to launch an image with all the code requirements fulfilled in order to launch the code.
  • saved_params: folder containing the files containing the initial parameters of the network. These can be used to ensure that different executions start from the same initial set of weights.

  • tmpPPO: folder needed to store temporal files created by the PPO algorithm

  • actorPPO: python file that contains the definition of the actor neural network for PPO.

  • criticPPO: python file that contains the definition of the critic neural network for PPO

  • parsePPO: python file used to parse PPO's logs

  • train_PPO_agent.py: python file that contains the implementation of the PPO algorithm.

  • actorES32.py: python file that contains the definition of the neural network for ES

  • optimizers.py: python file that contains the implementation of the gradient descent algorithm

  • parse_logs.py: python file used to parse ES's logs

  • train_ES_agent_multipleEnvs.py: python file that contains the implementation of the ES algorithm.

Configuration file options

The configuration file is a JSON file that contains the hyperparameters and other variable fields of the algorithm. These fields are as follows:

  • gnn-params: dict containing the hyperparameters of the GNN. These are:
    • link_state_dim: dimension of the hidden layer of the message and update functions
    • readout_units: dimension of the hidden layers of the readout function
    • T: number of iterations done for the message passing phase
    • num:demands: number of the number of possible demands sizes done by the environment
  • list_of_demands: list containing the possible demand sizes done by the environment
  • params_file: (Optional) name of the file that contains the initial weights of the network. If it doesn't exist, it will create one.
  • tr_graph_topologies: list of names of the topologies to be used for training the network
  • tr_dataset_folder_name: list of paths where the topologies specified in "tr_graph_topologies" can be found
  • eval_graph_topologies: list of names of the topologies to be used for evaluating the network. A log file will be generated for every topology listed here, as well as a log file that contains the average result across all the specified topologies.
  • eval_dataset_folder_name: list of paths where the topologies specified in "eval_graph_topologies" can be found
  • evaluation_episodes: hoy many episodes must be run to evaluate each topology in "eval_graph_topologies".
  • evaluation_period: indicates how often the current model has to be evaluated
  • number_mutations: Number of perturbations generated (this does NOT include those generated by mirrored sampling, true number will be double)
  • l2_coeff: Coefficient to be used for L2 regularization.
  • param_noise_std: Standard deviation used to generate the mutations
  • action_noise_std: Standard deviation of noise to be added to the action probabilities distributions (0 means no noise is added)
  • episode_iterations: number of iterations to run
  • optimizer: Type of optimizer to run. Name must match one of the optimizers in "optimizers.py"
  • lr: Initial rate of the optimizer

License

See LICENSE for full of the license text.

Copyright Copyright 2022 Universitat Politècnica de Catalunya

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Barcelona Neural Networking Center
BNN has been created with the main goals of carrying fundamental research in the field of Graph Neural Network applied to Computer Networks
Barcelona Neural Networking Center
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022