This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

Overview

ES_OTN_Public

Carlos Güemes Palau, Paul Almasan, Pere Barlet Ros, Albert Cabellos Aparicio

Contact us: [email protected], [email protected]

Abstract

This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies

The recent growth of emergent network applications (e.g., satellite networks, vehicular networks) is increasing the complexity of managing modern communication networks. As a result, the community proposed the Digital Twin Networks (DTN) as a key enabler of efficient network management. Network operators can leverage the DTN to perform different optimization tasks (e.g., Traffic Engineering, Network Planning). Deep Reinforcement Learning (DRL) showed a high performance when applied to solve network optimization problems. In the context of DTN, DRL can be leveraged to solve optimization problems without directly impacting the real-world network behavior. However, DRL scales poorly with the problem size and complexity. In this paper, we explore the use of Evolutionary Strategies (ES) to train DRL agents for solving a routing optimization problem. The experimental results show that ES achieved a training time speed-up of 128 and 6 for the NSFNET and GEANT2 topologies respectively.

Instructions to execute

Setting up the enviroment

  1. First, make sure your OS has a functioning implementation of MPI. We recommend using OpenMPI.
  2. Create the virtual environment and activate the environment.
virtualenv -p python3 myenv
source myenv/bin/activate
  1. Then we install the required packages
pip install -r Prerequisites/requirements.txt

or

pip install absl-py==0.13.0 astunparse==1.6.3 cachetools==4.2.2 certifi==2021.5.30 charset-normalizer==2.0.2 cloudpickle==1.6.0 cycler==0.10.0 dataclasses==0.8 decorator==4.4.2 flatbuffers==1.12 gast==0.3.3 google-auth==1.33.0 google-auth-oauthlib==0.4.4 google-pasta==0.2.0 grpcio==1.32.0 gym==0.18.3 h5py==2.10.0 idna==3.2 importlib-metadata==4.6.1 Keras==2.4.3 Keras-Preprocessing==1.1.2 kiwisolver==1.3.1 Markdown==3.3.4 matplotlib==3.3.4 mpi4py==3.0.3 networkx==2.5.1 numpy==1.19.5 oauthlib==3.1.1 opt-einsum==3.3.0 pandas==1.1.5 Pillow==8.2.0 pkg_resources==0.0.0 protobuf==3.17.3 pyasn1==0.4.8 pyasn1-modules==0.2.8 pyglet==1.5.15 pyparsing==2.4.7 python-dateutil==2.8.2 pytz==2021.1 PyYAML==5.4.1 requests==2.26.0 requests-oauthlib==1.3.0 rsa==4.7.2 scipy==1.5.4 six==1.15.0 tensorboard==2.5.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorflow==2.4.0 tensorflow-estimator==2.4.0 termcolor==1.1.0 typing-extensions==3.7.4.3 urllib3==1.26.6 Werkzeug==2.0.1 wrapt==1.12.1 zipp==3.5.0 kspath

NOTE: as an alternative to steps 1-3 you can try to set up a docker image to install both MPI and python. We offer an incomplete dockerfile with the steps needed to cover all the code dependencies at "Prerequisites/sample_dockerfile.dockerfile". The file must be completed so the image also clones the repository and runs the code.

  1. Register custom gym environment
pip install -e gym-environments/

Running ES

  1. Now we can train an ES agent. To do so we execute the following command, choosing an adequate configuration file (*.config).
python train_ES_agent_multipleEnvs.py -c path/to/configuration/file.config
  1. While training occurs the resulting file will be generated in Logs. to visualize the results, we can then plot the results using the following command:
python parse_logs.py -d Logs/log1.txt Logs/log2.txt

We can add one more log files for the "-d" option. We can also add the "-s" option to store the generated graph in a file:

python parse_logs.py -d Logs/log1.txt Logs/log2.txt -s graph_file.png

Running PPO

We also added the code necessary to run the solution using PPO, as to compare its result to ES

  1. To train the PPO agent we must execute the following command.
    • The "-e" option controls the number of iterations in the algorithm
    • The "-f" option is used to indicate the folder in which the topologies are stored ("*.graph") files
    • The "-g" option is used to indicate the name of the topology
    • Notice that inside train_PPO_agent.py there are different hyperparameters that you can configure to set the training for different topologies, to define the size of the GNN model, etc.
python train_PPO_agent.py -e 1500 -f dataset_Topologies -g nsfnet
  1. Now that the training process is executing, we can see the PPO agent performance evolution by parsing the log files.
    • The "-f" and "-g" options are the same as before
    • The "-d" option is used to indicate the path to the log file
python parse_PPO.py -d ./Logs/expsample_PPO_agentLogs.txt -f dataset_Topologies -g nsfnet

Repository contents

  • configs: folder containing the configuration files for the code.

    • As it is right now, the different configuration files should be grouped in subfolders (e.g., BatchFinal) as for the correct generation of the log files.
  • dataset_Topologies: contains the graph and paths files. The graphs must be represented as ".graph" files

  • gym_environments: pip package to be installed, which includes the gym environment to be used to train model

  • Logs: contains the logs generated by training of the models

  • models: contains the parameters of the network at the different stages of its training. The parameters are stored every time the network is updated. The different models will be divided in subfolders.

  • Prerequisites: a folder containing some files that may prove useful to set up the python environment

    • packages.txt: pip freeze of all the python packages needed to run the enviroment.
    • sample_dockerfile.dockerfile: (incomplete) dockerfile to launch an image with all the code requirements fulfilled in order to launch the code.
  • saved_params: folder containing the files containing the initial parameters of the network. These can be used to ensure that different executions start from the same initial set of weights.

  • tmpPPO: folder needed to store temporal files created by the PPO algorithm

  • actorPPO: python file that contains the definition of the actor neural network for PPO.

  • criticPPO: python file that contains the definition of the critic neural network for PPO

  • parsePPO: python file used to parse PPO's logs

  • train_PPO_agent.py: python file that contains the implementation of the PPO algorithm.

  • actorES32.py: python file that contains the definition of the neural network for ES

  • optimizers.py: python file that contains the implementation of the gradient descent algorithm

  • parse_logs.py: python file used to parse ES's logs

  • train_ES_agent_multipleEnvs.py: python file that contains the implementation of the ES algorithm.

Configuration file options

The configuration file is a JSON file that contains the hyperparameters and other variable fields of the algorithm. These fields are as follows:

  • gnn-params: dict containing the hyperparameters of the GNN. These are:
    • link_state_dim: dimension of the hidden layer of the message and update functions
    • readout_units: dimension of the hidden layers of the readout function
    • T: number of iterations done for the message passing phase
    • num:demands: number of the number of possible demands sizes done by the environment
  • list_of_demands: list containing the possible demand sizes done by the environment
  • params_file: (Optional) name of the file that contains the initial weights of the network. If it doesn't exist, it will create one.
  • tr_graph_topologies: list of names of the topologies to be used for training the network
  • tr_dataset_folder_name: list of paths where the topologies specified in "tr_graph_topologies" can be found
  • eval_graph_topologies: list of names of the topologies to be used for evaluating the network. A log file will be generated for every topology listed here, as well as a log file that contains the average result across all the specified topologies.
  • eval_dataset_folder_name: list of paths where the topologies specified in "eval_graph_topologies" can be found
  • evaluation_episodes: hoy many episodes must be run to evaluate each topology in "eval_graph_topologies".
  • evaluation_period: indicates how often the current model has to be evaluated
  • number_mutations: Number of perturbations generated (this does NOT include those generated by mirrored sampling, true number will be double)
  • l2_coeff: Coefficient to be used for L2 regularization.
  • param_noise_std: Standard deviation used to generate the mutations
  • action_noise_std: Standard deviation of noise to be added to the action probabilities distributions (0 means no noise is added)
  • episode_iterations: number of iterations to run
  • optimizer: Type of optimizer to run. Name must match one of the optimizers in "optimizers.py"
  • lr: Initial rate of the optimizer

License

See LICENSE for full of the license text.

Copyright Copyright 2022 Universitat Politècnica de Catalunya

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Barcelona Neural Networking Center
BNN has been created with the main goals of carrying fundamental research in the field of Graph Neural Network applied to Computer Networks
Barcelona Neural Networking Center
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022