Python Single Object Tracking Evaluation

Overview

pysot-toolkit

The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including

Install

git clone https://github.com/StrangerZhang/pysot-toolkit
pip install -r requirements.txt
cd pysot/utils/
python setup.py build_ext --inplace
# if you need to draw graph, you need latex installed on your system

Download Dataset

Download json files used in our toolkit baidu pan or Google Drive

  1. Put CVRP13.json, OTB100.json, OTB50.json in OTB100 dataset directory (you need to copy Jogging to Jogging-1 and Jogging-2, and copy Skating2 to Skating2-1 and Skating2-2 or using softlink)

    The directory should have the below format

    | -- OTB100/

    ​ | -- Basketball

    ​ | ......

    ​ | -- Woman

    ​ | -- OTB100.json

    ​ | -- OTB50.json

    ​ | -- CVPR13.json

  2. Put all other jsons in the dataset directory like in step 1

Usage

1. Evaluation on VOT2018(VOT2016)

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset VOT2018 \				# dataset name(VOT2018, VOT2016)
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers ECO UPDT SiamRPNpp 			# tracker names 

# you will see
------------------------------------------------------------
|Tracker Name| Accuracy | Robustness | Lost Number |  EAO  |
------------------------------------------------------------
| SiamRPNpp  |  0.600   |   0.234    |    50.0     | 0.415 |
|    UPDT    |  0.536   |   0.184    |    39.2     | 0.378 |
|    ECO     |  0.484   |   0.276    |    59.0     | 0.280 |
------------------------------------------------------------

2. Evaluation on OTB100(UAV123, NFS, LaSOT)

converted *.txt tracking results will be released soon

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset OTB100 \				# dataset name(OTB100, UAV123, NFS, LaSOT)
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers SiamRPN++ C-COT DaSiamRPN ECO  \	# tracker names 
	--num 4 \				  	# evaluation thread
	--show_video_level \ 	  			# wether to show video results
	--vis 					  	# draw graph

# you will see (Normalized Precision not used in OTB evaluation)
-----------------------------------------------------
|Tracker name| Success | Norm Precision | Precision |
-----------------------------------------------------
| SiamRPN++  |  0.696  |     0.000      |   0.914   |
|    ECO     |  0.691  |     0.000      |   0.910   |
|   C-COT    |  0.671  |     0.000      |   0.898   |
| DaSiamRPN  |  0.658  |     0.000      |   0.880   |
-----------------------------------------------------

-----------------------------------------------------------------------------------------
|    Tracker name     |      SiamRPN++      |      DaSiamRPN      |         ECO         |
-----------------------------------------------------------------------------------------
|     Video name      | success | precision | success | precision | success | precision |
-----------------------------------------------------------------------------------------
|     Basketball      |  0.423  |   0.555   |  0.677  |   0.865   |  0.653  |   0.800   |
|        Biker        |  0.728  |   0.932   |  0.319  |   0.448   |  0.506  |   0.832   |
|        Bird1        |  0.207  |   0.360   |  0.274  |   0.508   |  0.192  |   0.302   |
|        Bird2        |  0.629  |   0.742   |  0.604  |   0.697   |  0.775  |   0.882   |
|      BlurBody       |  0.823  |   0.879   |  0.759  |   0.767   |  0.713  |   0.894   |
|      BlurCar1       |  0.803  |   0.917   |  0.837  |   0.895   |  0.851  |   0.934   |
|      BlurCar2       |  0.864  |   0.926   |  0.794  |   0.872   |  0.883  |   0.931   |
......
|        Vase         |  0.564  |   0.698   |  0.554  |   0.742   |  0.544  |   0.752   |
|       Walking       |  0.761  |   0.956   |  0.745  |   0.932   |  0.709  |   0.955   |
|      Walking2       |  0.362  |   0.476   |  0.263  |   0.371   |  0.793  |   0.941   |
|        Woman        |  0.615  |   0.908   |  0.648  |   0.887   |  0.771  |   0.936   |
-----------------------------------------------------------------------------------------
OTB100 Success Plot OTB100 Precision Plot

3. Evaluation on VOT2018-LT

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset VOT2018-LT \				# dataset name
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers SiamRPN++ MBMD DaSiam-LT \		# tracker names 
	--num 4 \				  	# evaluation thread
	--vis \					  	# wether to draw graph

# you will see
-------------------------------------------
|Tracker Name| Precision | Recall |  F1   |
-------------------------------------------
| SiamRPN++  |   0.649   | 0.610  | 0.629 |
|    MBMD    |   0.634   | 0.588  | 0.610 |
| DaSiam-LT  |   0.627   | 0.588  | 0.607 |
|    MMLT    |   0.574   | 0.521  | 0.546 |
|  FuCoLoT   |   0.538   | 0.432  | 0.479 |
|  SiamVGG   |   0.552   | 0.393  | 0.459 |
|   SiamFC   |   0.600   | 0.334  | 0.429 |
-------------------------------------------

Get Tracking Results of Your Own Tracker

Add pysot-toolkit to your PYTHONPATH

export PYTHONPATH=/path/to/pysot-toolkit:$PYTHONPATH

1. OPE (One Pass Evaluation)

from pysot.datasets import DatasetFactory

dataset = DatasetFactory.create_dataset(name=dataset_name,
                                       	dataset_root=datset_root,
                                        load_img=False)
for video in dataset:
    for idx, (img, gt_bbox) in enumerate(video):
        if idx == 0:
            # init your tracker here
        else:
            # get tracking result here

2. Restarted Evaluation

from pysot.datasets import DatasetFactory
from pysot.utils.region import vot_overlap

dataset = DatasetFactory.create_dataset(name=dataset_name,
                                       	dataset_root=datset_root,
                                        load_img=False)
frame_counter = 0
pred_bboxes = []
for video in dataset:
    for idx, (img, gt_bbox) in enumerate(video):
        if idx == frame_counter:
            # init your tracker here
            pred_bbox.append(1)
        elif idx > frame_counter:
            # get tracking result here
            pred_bbox = 
            overlap = vot_overlap(pred_bbox, gt_bbox, (img.shape[1], img.shape[0]))
            if overlap > 0: 
	    	# continue tracking
                pred_bboxes.append(pred_bbox)
            else: 
	    	# lost target, restart
                pred_bboxes.append(2)
                frame_counter = idx + 5
        else:
            pred_bboxes.append(0)
Owner
Computational Advertising & Recommendation
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022