Python Single Object Tracking Evaluation

Overview

pysot-toolkit

The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including

Install

git clone https://github.com/StrangerZhang/pysot-toolkit
pip install -r requirements.txt
cd pysot/utils/
python setup.py build_ext --inplace
# if you need to draw graph, you need latex installed on your system

Download Dataset

Download json files used in our toolkit baidu pan or Google Drive

  1. Put CVRP13.json, OTB100.json, OTB50.json in OTB100 dataset directory (you need to copy Jogging to Jogging-1 and Jogging-2, and copy Skating2 to Skating2-1 and Skating2-2 or using softlink)

    The directory should have the below format

    | -- OTB100/

    ​ | -- Basketball

    ​ | ......

    ​ | -- Woman

    ​ | -- OTB100.json

    ​ | -- OTB50.json

    ​ | -- CVPR13.json

  2. Put all other jsons in the dataset directory like in step 1

Usage

1. Evaluation on VOT2018(VOT2016)

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset VOT2018 \				# dataset name(VOT2018, VOT2016)
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers ECO UPDT SiamRPNpp 			# tracker names 

# you will see
------------------------------------------------------------
|Tracker Name| Accuracy | Robustness | Lost Number |  EAO  |
------------------------------------------------------------
| SiamRPNpp  |  0.600   |   0.234    |    50.0     | 0.415 |
|    UPDT    |  0.536   |   0.184    |    39.2     | 0.378 |
|    ECO     |  0.484   |   0.276    |    59.0     | 0.280 |
------------------------------------------------------------

2. Evaluation on OTB100(UAV123, NFS, LaSOT)

converted *.txt tracking results will be released soon

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset OTB100 \				# dataset name(OTB100, UAV123, NFS, LaSOT)
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers SiamRPN++ C-COT DaSiamRPN ECO  \	# tracker names 
	--num 4 \				  	# evaluation thread
	--show_video_level \ 	  			# wether to show video results
	--vis 					  	# draw graph

# you will see (Normalized Precision not used in OTB evaluation)
-----------------------------------------------------
|Tracker name| Success | Norm Precision | Precision |
-----------------------------------------------------
| SiamRPN++  |  0.696  |     0.000      |   0.914   |
|    ECO     |  0.691  |     0.000      |   0.910   |
|   C-COT    |  0.671  |     0.000      |   0.898   |
| DaSiamRPN  |  0.658  |     0.000      |   0.880   |
-----------------------------------------------------

-----------------------------------------------------------------------------------------
|    Tracker name     |      SiamRPN++      |      DaSiamRPN      |         ECO         |
-----------------------------------------------------------------------------------------
|     Video name      | success | precision | success | precision | success | precision |
-----------------------------------------------------------------------------------------
|     Basketball      |  0.423  |   0.555   |  0.677  |   0.865   |  0.653  |   0.800   |
|        Biker        |  0.728  |   0.932   |  0.319  |   0.448   |  0.506  |   0.832   |
|        Bird1        |  0.207  |   0.360   |  0.274  |   0.508   |  0.192  |   0.302   |
|        Bird2        |  0.629  |   0.742   |  0.604  |   0.697   |  0.775  |   0.882   |
|      BlurBody       |  0.823  |   0.879   |  0.759  |   0.767   |  0.713  |   0.894   |
|      BlurCar1       |  0.803  |   0.917   |  0.837  |   0.895   |  0.851  |   0.934   |
|      BlurCar2       |  0.864  |   0.926   |  0.794  |   0.872   |  0.883  |   0.931   |
......
|        Vase         |  0.564  |   0.698   |  0.554  |   0.742   |  0.544  |   0.752   |
|       Walking       |  0.761  |   0.956   |  0.745  |   0.932   |  0.709  |   0.955   |
|      Walking2       |  0.362  |   0.476   |  0.263  |   0.371   |  0.793  |   0.941   |
|        Woman        |  0.615  |   0.908   |  0.648  |   0.887   |  0.771  |   0.936   |
-----------------------------------------------------------------------------------------
OTB100 Success Plot OTB100 Precision Plot

3. Evaluation on VOT2018-LT

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset VOT2018-LT \				# dataset name
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers SiamRPN++ MBMD DaSiam-LT \		# tracker names 
	--num 4 \				  	# evaluation thread
	--vis \					  	# wether to draw graph

# you will see
-------------------------------------------
|Tracker Name| Precision | Recall |  F1   |
-------------------------------------------
| SiamRPN++  |   0.649   | 0.610  | 0.629 |
|    MBMD    |   0.634   | 0.588  | 0.610 |
| DaSiam-LT  |   0.627   | 0.588  | 0.607 |
|    MMLT    |   0.574   | 0.521  | 0.546 |
|  FuCoLoT   |   0.538   | 0.432  | 0.479 |
|  SiamVGG   |   0.552   | 0.393  | 0.459 |
|   SiamFC   |   0.600   | 0.334  | 0.429 |
-------------------------------------------

Get Tracking Results of Your Own Tracker

Add pysot-toolkit to your PYTHONPATH

export PYTHONPATH=/path/to/pysot-toolkit:$PYTHONPATH

1. OPE (One Pass Evaluation)

from pysot.datasets import DatasetFactory

dataset = DatasetFactory.create_dataset(name=dataset_name,
                                       	dataset_root=datset_root,
                                        load_img=False)
for video in dataset:
    for idx, (img, gt_bbox) in enumerate(video):
        if idx == 0:
            # init your tracker here
        else:
            # get tracking result here

2. Restarted Evaluation

from pysot.datasets import DatasetFactory
from pysot.utils.region import vot_overlap

dataset = DatasetFactory.create_dataset(name=dataset_name,
                                       	dataset_root=datset_root,
                                        load_img=False)
frame_counter = 0
pred_bboxes = []
for video in dataset:
    for idx, (img, gt_bbox) in enumerate(video):
        if idx == frame_counter:
            # init your tracker here
            pred_bbox.append(1)
        elif idx > frame_counter:
            # get tracking result here
            pred_bbox = 
            overlap = vot_overlap(pred_bbox, gt_bbox, (img.shape[1], img.shape[0]))
            if overlap > 0: 
	    	# continue tracking
                pred_bboxes.append(pred_bbox)
            else: 
	    	# lost target, restart
                pred_bboxes.append(2)
                frame_counter = idx + 5
        else:
            pred_bboxes.append(0)
Owner
Computational Advertising & Recommendation
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022